【題目】如圖所示,以ABCD的頂點(diǎn)A為圓心,AB為半徑作圓,分別交AD,BC于點(diǎn)E、F,延長(zhǎng)BA⊙AG.

(1)求證:.

(2)若的度數(shù)為70°,求∠C的度數(shù).

【答案】(1)詳見(jiàn)解析;(2)125°

【解析】

(1)連接AF,根據(jù)平行線的性質(zhì)及在同圓中圓心角相等,則所對(duì)的弧相等求得結(jié)論;(2)由的度數(shù)為70°,可得∠BAF=70°,根據(jù)等腰三角形的性質(zhì)及三角形的內(nèi)角和定理可求得∠B=55°,再由平行線的性質(zhì)即可求得∠C =125°.

(1)證明:連接AF.

∵A為圓心,∴AB=AF,

∴∠ABF=∠AFB,

四邊形ABCD為平行四邊形,

∴AD∥BC,∠AFB=∠DAF,∠GAD=∠ABF,

∴∠DAF=∠GAD,

;

(2)∵的度數(shù)為70°,

∴∠BAF=70°,

∵AB=AF,

∴∠B=∠AFB=(180°-∠BAF)=55°,

四邊形ABCD為平行四邊形,

∴AB∥CD,

∴∠C=180°-∠B=125°。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:韋達(dá)定理:設(shè)一元二次方程ax2+bx+c=0(且a≠0)中,兩根有如下關(guān)系:,.

已知p2﹣p﹣1=0,1﹣q﹣q2=0,且pq≠1,求 的值.

解:由p2﹣p﹣1=01﹣q﹣q2=0,可知p≠0,q≠0

又∵pq≠1,∴ ;

∴1﹣q﹣q2=0可變形為的特征.

所以p是方程x2﹣x﹣1=0的兩個(gè)不相等的實(shí)數(shù)根.

p+=1,

=1.

根據(jù)閱讀材料所提供的方法,完成下面的解答.

已知:2m2﹣5m﹣1=0,,且m≠n.求: 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形中,,,設(shè)的長(zhǎng)為,四邊形的面積為,則之間的函數(shù)關(guān)系式是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一位籃球運(yùn)動(dòng)員在距離籃圈中心水平距離4m處起跳投籃,球沿一條拋物線運(yùn)動(dòng),當(dāng)球運(yùn)動(dòng)的水平距離為2.5m時(shí),達(dá)到最大高度3.5m,然后準(zhǔn)確落入籃框內(nèi).已知籃圈中心距離地面高度為3.05m,在如圖所示的平面直角坐標(biāo)系中,下列說(shuō)法正確的是( 。

A. 此拋物線的解析式是y=﹣x2+3.5

B. 籃圈中心的坐標(biāo)是(4,3.05)

C. 此拋物線的頂點(diǎn)坐標(biāo)是(3.5,0)

D. 籃球出手時(shí)離地面的高度是2m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在所給正方形網(wǎng)格圖中完成下列各題:(用直尺畫圖,保留痕跡)

(1)求出格點(diǎn)ABC(頂點(diǎn)均在格點(diǎn)上)的面積;

(2)畫出格點(diǎn)ABC關(guān)于直線DE對(duì)稱的;

(3)在DE上畫出點(diǎn)Q,使QAB的周長(zhǎng)最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)閱讀理解:

如圖①,在ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.

解決此問(wèn)題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,再連接BE(或?qū)?/span>ACD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到EBD),把AB、AC,2AD集中在ABE中,利用三角形三邊的關(guān)系即可判斷.

中線AD的取值范圍是 ;

(2)問(wèn)題解決:

如圖②,在ABC中,D是BC邊上的中點(diǎn),DEDF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證:BE+CFEF;

(3)問(wèn)題拓展:

如圖③,在四邊形ABCD中,B+D=180°,CB=CD,BCD=140°,以為頂點(diǎn)作一個(gè)70°角,角的兩邊分別交AB,AD于E、F兩點(diǎn),連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,,點(diǎn)點(diǎn)出發(fā)沿的速度移動(dòng),點(diǎn)點(diǎn)出發(fā)沿點(diǎn)以的速度移動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)兩個(gè)點(diǎn)同時(shí)停止運(yùn)動(dòng),在兩個(gè)點(diǎn)運(yùn)動(dòng)過(guò)程中,請(qǐng)回答:

經(jīng)過(guò)多少時(shí)間,的面積是

請(qǐng)你利用配方法,求出經(jīng)過(guò)多少時(shí)間,四邊形面積最?并求出這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°AC=6cm,BC=8cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),按C→B→A的路徑,以2cm每秒的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t.

(1)當(dāng)t=1時(shí),求△ACP的面積.

(2)t為何值時(shí),線段AP是∠CAB的平分線?

(3)請(qǐng)利用備用圖2繼續(xù)探索:當(dāng)t為何值時(shí),△ACP是以AC為腰的等腰三角形?(直接寫出結(jié)論)

(4)當(dāng)p點(diǎn)在AB上運(yùn)動(dòng)時(shí),線段CP值為整數(shù)的點(diǎn)有_______________個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形AOBC是菱形.若點(diǎn)A的坐標(biāo)是(3,4),則點(diǎn)C的坐標(biāo)是____.

查看答案和解析>>

同步練習(xí)冊(cè)答案