【題目】如圖,A、P、B、C是⊙O上四點,∠APC=∠CPB=60°.
(1)求證:△ABC是等邊三角形;
(2)連接OA,OB,當(dāng)點P位于什么位置時,四邊形PBOA是菱形?并說明理由;
(3)已知PA=a,PB=b,求PC的長(用含a和b的式子表示).
【答案】(1)證明見解析;(2)當(dāng)點P位于的中點時,四邊形PBOA是菱形,理由見解析;(3)a+b.
【解析】
(1)利用圓周角定理得到∠BAC=∠CPB=60°,則∠ABC=∠BAC=∠ACB=60°,從而可判斷△ABC為等邊三角形;
(2)當(dāng)點P位于的中點時,四邊形PBOA是菱形,連接OP,如圖1,先證明∠AOP=∠BOP=60°,再證明△OAP和△OBP都為等邊三角形,從而得到四邊形PBOA是菱形;
(3)如圖2,在PC上截取PD=PA,證明△APB≌△ADC得到PB=DC,從而得到PC=PD+DC=PA+PB=a+b.
(1)證明:∵∠BAC=∠CPB=60°,
∠ABC=∠APC=60°,.
∴∠ABC=∠BAC=∠ACB=60°,
∴△ABC為等邊三角形;
(2)解:當(dāng)點P位于的中點時,四邊形PBOA是菱形.
理由如下:連接OP,
∵∠AOB=2∠ACB=120°,P是的中點,
∴∠AOP=∠BOP=60°
又∵OA=OP=OB,
∴△OAP和△OBP都為等邊三角形,
∴OA=AP=OB=PB
∴四邊形PBOA是菱形.
(3)解:如圖2,在PC上截取PD=PA,
又∵∠APC=60°,
∴△APD是等邊三角形,
∴PA=DA,∠DAP=60°,
∵∠PAB+∠BAD=∠BAD+∠DAC,
∴∠PAB=∠DAC,
在△APB和△ADC中
,
∴△APB≌△ADC(ASA),
∴PB=DC,
又∵PA=PD,
∴PC=PD+DC=PA+PB=a+b.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=8,AD=17,折疊紙片使點B落在邊AD上的E處,折痕為PQ.當(dāng)E在AD邊上移動時,折痕的端點P,Q也隨著移動.若限定P,Q分別在邊BA,BC上移動,則點E在邊AD上移動的最大距離為( 。
A.6B.7C.8D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2的正方形中,對角線與相交于點,點是上的一個動點,過點作,分別交正方形的兩條邊于點,,連接、,設(shè),的面積為,則能大致反映與之間的函數(shù)關(guān)系的圖象為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E、F分別是邊BC,CD上一點,∠EAF=45°.將△ABE繞著點A逆時針旋轉(zhuǎn)90°得到△ADG,連接EF,求證EF=FG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙中,為直徑,、分別切⊙于點、.
(1)如圖①,若,求的大小;
(2)如圖②,過點作∥,交于點,交⊙于點,若,求的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AC=6,BC=8,AB=10,以點C為圓心,4為半徑作圓.點D是⊙C上的一個動點,連接AD、BD,則AD+BD的最小值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】最近霧霾天氣頻繁,使得空氣凈化器得以暢銷.某商場代理銷售某種空氣凈化器,其進價是500元/臺,經(jīng)過市場銷售后發(fā)現(xiàn),當(dāng)售價是1000元/臺時,每月可售出50臺,且售價每降低20元,每月就可多售出5臺.若供貨商規(guī)定這種空氣凈化器售價不能低于600元/臺,代理銷售商每月要完成不低于60臺的銷售任務(wù).
(1)試確定月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關(guān)系式,并求出自變量x的取值范圍.
(2)當(dāng)售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一座商場大樓的頂部豎直立有一個矩形廣告牌,小紅同學(xué)在地面上選擇了在條直線上的三點為樓底),,她在處測得廣告牌頂端的仰角為,在處測得商場大樓樓頂的仰角為米.已知廣告牌的高度米,求這座商場大樓的高度(,小紅的身高不計,結(jié)果保留整數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com