【題目】如圖,已知直線射線,。是射線上一動(dòng)點(diǎn),過點(diǎn)作交射線于點(diǎn),連結(jié)。作,交直線于點(diǎn),平分。
(1)若點(diǎn)都在點(diǎn)的右側(cè)。
①求的度數(shù);
②若,求的度數(shù)。
(2)在點(diǎn)的運(yùn)動(dòng)過程中,是否存在這樣的情形,使,若存在,求出的度數(shù);若不存在,請(qǐng)說明理由。
【答案】(1)①40°;②60°;(2)60°或15°.
【解析】
(1)①根據(jù)平行線的性質(zhì)可知,再結(jié)合角平分線的性質(zhì)可求得,進(jìn)而求解即可.
②根據(jù)平行線性質(zhì)可得,結(jié)合已知條件且可求得,根據(jù)平行線性質(zhì)進(jìn)而可求得.
(2)根據(jù)已知條件設(shè),則,分①當(dāng)點(diǎn)在點(diǎn)的右側(cè)時(shí)②當(dāng)點(diǎn)在點(diǎn)的左側(cè)時(shí)兩種情況,結(jié)合已知條件進(jìn)行求解即可.
(1)①∵,,
∴,
∵,平分,
∴
②∵
∴,
,
∴
又∵,
∴
∴
∵
∴
(2)設(shè),則,
①當(dāng)點(diǎn)在點(diǎn)的右側(cè)時(shí),
則,
∵,
∴,解得,
∴
②當(dāng)點(diǎn)在點(diǎn)的左側(cè)時(shí),
則,
∵,,
∴,解得,
∴
∴
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為直線上的一點(diǎn),為直角,平分.
(1)如圖1,若,則______°.
(2)如圖1,若,求的度數(shù).(用含的代數(shù)式表示)
(3)如圖2,若,平分,且,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列各式:
=-1;
;
.
(1)根據(jù)前面各式的規(guī)律可得:
①.
②.
(2)請(qǐng)用上面的結(jié)論進(jìn)行計(jì)算:
①(答案可含有冪的形式表示);
②若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=75°,BC=7,△ABC的面積為14,D為 BC邊上一動(dòng)點(diǎn)(不與B,C重合),將△ABD和△ACD分別沿直線AB,AC翻折得到△ABE與△ACF,那么△AEF的面積最小值為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B、C在線段AD的異側(cè),點(diǎn)E、F分別是線段AB、CD上的點(diǎn).已知∠AEG=∠AGE,∠DCG=∠DGC.
(1) 求證:AB∥CD
(2) 若∠AGE+∠AHF=180°,且∠BFC-30°=2∠C,求∠B的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與坐標(biāo)軸交于點(diǎn)A(-1, 0)和點(diǎn)B(0,-5).
(1)求該二次函數(shù)的解析式;
(2)已知該函數(shù)圖象的對(duì)稱軸上存在一點(diǎn)P,使得△ABP的周長(zhǎng)最。(qǐng)求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一兒童服裝商店在銷售中發(fā)現(xiàn):某品牌童裝平均每天可售出20件,每件盈利40元.為了迎接“六·一”兒童節(jié),商店決定采取適當(dāng)?shù)慕祪r(jià)措施,擴(kuò)大銷售量,增加盈利,盡快減少庫(kù)存.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):如果每件童裝降價(jià)1元,那么平均每天就可多售出2件.要想平均每天銷售這種童裝上盈利1200元,那么每件童裝應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖∠AOB=120°,把三角板60°的角的頂點(diǎn)放在O處.轉(zhuǎn)動(dòng)三角板(其中OC邊始終在∠AOB內(nèi)部),OE始終平分∠AOD.
(1)(特殊發(fā)現(xiàn))如圖1,若OC邊與OA邊重合時(shí),求出∠COE與∠BOD的度數(shù).
(2)(類比探究)如圖2,當(dāng)三角板繞O點(diǎn)旋轉(zhuǎn)的過程中(其中OC邊始終在∠AOB內(nèi)部),∠COE與∠BOD的度數(shù)比是否為定值?若為定值,請(qǐng)求出這個(gè)定值;若不為定值,請(qǐng)說明理由.
(3)(拓展延伸)如圖3,在轉(zhuǎn)動(dòng)三角板的過程中(其中OC邊始終在∠AOB內(nèi)部),若OP平分∠COB,請(qǐng)畫出圖形,直接寫出∠EOP的度數(shù)(無須證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)甲、乙、丙、丁四人做傳球游戲:第一次由甲將球隨機(jī)傳給乙、丙、丁中的某一人,從第二次起,每一次都由持球者將球再隨機(jī)傳給其他三人中的某一人.求第二次傳球后球回到甲手里的概率.(請(qǐng)用“畫樹狀圖”的方式給出分析過程)
(2)如果甲跟另外n(n≥2)個(gè)人做(1)中同樣的游戲,那么,第三次傳球后球回到甲手里的概率是 (請(qǐng)直接寫出結(jié)果).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com