【題目】小聰和小明沿同一條路同時(shí)從學(xué)校出發(fā)到某超市購物,學(xué)校與超市的路程是4千米.小聰騎自行車,小明步行,當(dāng)小聰從原路回到學(xué)校時(shí),小明剛好到達(dá)超市.圖中折線O﹣A﹣B﹣C和線段OD分別表示兩人離學(xué)校的路程s(千米)與所經(jīng)過的時(shí)間t(分鐘)之間的函數(shù)關(guān)系,請根據(jù)圖象回答下列問題:
(1)小聰在超市購物的時(shí)間為 分鐘,小聰返回學(xué)校的速度為 千米/分鐘;
(2)請你求出小明離開學(xué)校的路程s(千米)與所經(jīng)過的時(shí)間t(分鐘)之間的函數(shù)關(guān)系式;
(3)當(dāng)小聰與小明迎面相遇時(shí),他們離學(xué)校的路程是多少千米?
【答案】(1)15,;(2)s=t;(3)3千米
【解析】
(1)根據(jù)購物時(shí)間=離開時(shí)間﹣到達(dá)時(shí)間即可求出小聰在超市購物的時(shí)間;再根據(jù)速度=路程÷時(shí)間即可算出小聰返回學(xué)校的速度;
(2)根據(jù)點(diǎn)的坐標(biāo)利用待定系數(shù)法即可求出小明離開學(xué)校的路程s與所經(jīng)過的時(shí)間t之間的函數(shù)關(guān)系式;
(3)根據(jù)點(diǎn)的坐標(biāo)利用待定系數(shù)法即可求出當(dāng)30≤s≤45時(shí)小聰離開學(xué)校的路程s(千米)與所經(jīng)過的時(shí)間t(分鐘)之間的函數(shù)關(guān)系式,令兩函數(shù)關(guān)系式相等即可得出關(guān)于t的一元一次方程,解之即可求出t值,再將其代入任意一函數(shù)解析式求出s值即可.
解:(1)30﹣15=15(分鐘);
4÷(45﹣30)=(千米/分鐘).
故答案為:15;.
(2)設(shè)小明離開學(xué)校的路程s(千米)與所經(jīng)過的時(shí)間t(分鐘)之間的函數(shù)關(guān)系式為s=mt+n,
將(0,0)、(45,4)代入s=mt+n中,
,解得:,
∴s=t.
∴小明離開學(xué)校的路程s與所經(jīng)過的時(shí)間t之間的函數(shù)關(guān)系式為s=t.
(3)當(dāng)30≤s≤45時(shí),設(shè)小聰離開學(xué)校的路程s(千米)與所經(jīng)過的時(shí)間t(分鐘)之間的函數(shù)關(guān)系式為s=kt+b,將(30,4)、(45,0)代入s=kt+b,
,解得:,
∴s=﹣t+12.
令s=t=﹣t+12,
解得:t=,
∴s=t=×=3.
答:當(dāng)小聰與小明迎面相遇時(shí),他們離學(xué)校的路程是3千米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大酒店共有豪華間 50 間,實(shí)行旅游淡季、旺季兩種價(jià)格標(biāo)準(zhǔn):
淡季 | 旺季 | |
豪華間價(jià)格(元/天) | 600 | 800 |
(1)該酒店去年淡季,開始時(shí),平均每天入住房間數(shù)為 20 間,后來,實(shí)行降價(jià)優(yōu)惠提高豪華間入住率,每降低 20 元,每天入住房間數(shù)增加 1 間.如果豪華間的某日總收入為 12500 元,則該天的豪華間實(shí)際每間價(jià)格為多少元(同天的房間價(jià)格相同);
(2)該酒店豪華間的間數(shù)不變.經(jīng)市場調(diào)查預(yù)測,如果今年旺季豪華間實(shí)行旺季價(jià)格,那么每天都客滿;如果價(jià)格繼續(xù)上漲,那么每增加 25 元,每天未入住房間數(shù)增加 1 間.不考慮其他因素,該酒店將豪華間的價(jià)格上漲多少元時(shí), 豪華間的日總收入最高?最高日總收入是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AO⊥BC于點(diǎn)O,OE⊥AB于點(diǎn)E,以點(diǎn)O為圓心,OE為半徑作半圓,交AO于點(diǎn)F.
(1)求證:AC是⊙O的切線;
(2)若點(diǎn)F是OA的中點(diǎn),OE=3,求圖中陰影部分的面積;
(3)在(2)的條件下,點(diǎn)P是BC邊上的動點(diǎn),當(dāng)PE+PF取最小值時(shí),直接寫出BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O,連接AF、CE.
(1)求證:△AOE≌△COF;
(2)求證:四邊形AFCE為菱形;
(3)求菱形AFCE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖所示,頂點(diǎn)坐標(biāo)為(﹣2,﹣9a),下列結(jié)論:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有兩個(gè)根x1和x2,且x1<x2,則﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四個(gè)根,則這四個(gè)根的和為﹣4.其中正確的結(jié)論有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B在拋物線上,且與點(diǎn)C關(guān)于拋物線的對稱軸對稱,已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點(diǎn)A(﹣1,0)及點(diǎn)B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)、在函數(shù)(,且是常數(shù))的圖像上,且點(diǎn)在點(diǎn)的左側(cè)過點(diǎn)作軸,垂足為,過點(diǎn)作軸,垂足為,與的交點(diǎn)為,連結(jié)、.若和的面積分別為1和4,則的值為( )
A.4B.C.D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點(diǎn)E,若BF=6,AB=5,則AE的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com