【題目】在正方形 中,點(diǎn)是射線 上一個(gè)動(dòng)點(diǎn).連接,,點(diǎn),分別為,的中點(diǎn),連接交于點(diǎn).
(1)如圖 1,當(dāng)點(diǎn)在線段 的延長(zhǎng)線上時(shí),請(qǐng)判斷的形狀,并說明理由.
(2)如圖 2,正方形 的邊長(zhǎng)為 4,點(diǎn)與點(diǎn) 關(guān)于直線 對(duì)稱,且點(diǎn)在線段 上.連接,若點(diǎn) 恰好在直線上,求的長(zhǎng).
【答案】(1)等腰三角形,證明見解析;(2)
【解析】
(1)延長(zhǎng) 至,使,連接 ,先證得,再證即可解決本題;
(2)延長(zhǎng)至 ,使 ,連接 ,先證,再證得,根據(jù)相似比求出即可.
(1)是等腰三角形,
延長(zhǎng) 至,使,連接 ,
∵ ,
,即:,
∵四邊形 是正方形,
∴ ,,
在和中,
(SAS),
,
∵ 是的中點(diǎn),
∴ ,
∴ ,即: ,
∴ 是的中點(diǎn),
又∵ 是 的中點(diǎn),
∴ ,
∴,
∴ ,
∴ ,
∴是等腰三角形;
(2)延長(zhǎng)至 ,使 ,連接 ,
∵ 是的中點(diǎn),,
,
又∵,
,
∴ 是的中點(diǎn),
∵,
,
又∵ ,
,
,
,
設(shè) ,
即: ,
解之得: (舍去),
則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+x﹣1與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,其頂點(diǎn)為D.將拋物線位于直線l:y=t(t<)上方的部分沿直線l向下翻折,拋物線剩余部分與翻折后所得圖形組成一個(gè)“M”形的新圖象.
(1)求點(diǎn)A,B,D的坐標(biāo)
(2)如圖①,拋物線翻折后,點(diǎn)D落在點(diǎn)E處.當(dāng)點(diǎn)E在△ABC內(nèi)(含邊界)時(shí),求t的取值范圍;
(3)如圖②,當(dāng)t=0時(shí),若Q是“M”形新圖象上一動(dòng)點(diǎn),是否存在以CQ為直徑的圓與x軸相切于點(diǎn)P?若存在,直接寫出出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠甲、乙兩個(gè)部門各有員工400人,為了解這兩個(gè)部門員工的生產(chǎn)技能情況,進(jìn)行了抽樣調(diào)查,過程如下,請(qǐng)補(bǔ)充完整.
收集數(shù)據(jù)
從甲、乙兩個(gè)部門各隨機(jī)抽取20名員工,進(jìn)行了生產(chǎn)技能測(cè)試,測(cè)試成績(jī)(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
整理、描述數(shù)據(jù)
按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
成績(jī) 人數(shù) 部門 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 |
(說明:成績(jī)80分及以上為生產(chǎn)技能優(yōu)秀,70--79分為生產(chǎn)技能良好,60--69分為生產(chǎn)技能合格,60分以下為生產(chǎn)技能不合格)
分析數(shù)據(jù)
兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:
部門 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲 | 78.3 | 77.5 | 75 |
乙 | 78 | 80.5 | 81 |
得出結(jié)論:
.估計(jì)乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)為____________;
.可以推斷出_____________部門員工的生產(chǎn)技能水平較高,理由為_____________.(至少從兩個(gè)不同的角度說明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣x+b(b>0)交x軸,y軸于點(diǎn)M,N,點(diǎn)A,B是OM,ON上的點(diǎn),以AB為邊作正方形ABCD,CD恰好落在MN上,已知AB=2,則b的值為( 。
A.1+B.C.D.2+
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+ax+b交x軸于A(﹣2,0),B(4,0)兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)P是拋物線在第一象限上的一點(diǎn),過點(diǎn)P作AC的平行線l,分別交直線BC,y軸于點(diǎn)D,點(diǎn)E.
(1)填空:直線AC的解析式為 ,拋物線的解析式為 ;
(2)當(dāng)CD=時(shí),求OE的長(zhǎng);
(3)當(dāng)DP=DE時(shí),求點(diǎn)P的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知的直徑,是的弦,過點(diǎn)作的切線交的延長(zhǎng)線于點(diǎn),過點(diǎn)作,垂足為,與交于點(diǎn),設(shè),的度數(shù)分別是,,且.
(1)用含的代數(shù)式表示;
(2)連結(jié)交于點(diǎn),若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在校園文化藝術(shù)節(jié)中,九年級(jí)一班有1名男生和2名女生獲得美術(shù)獎(jiǎng),另有2名男生和2名女生獲得音樂獎(jiǎng).
(1)從獲得美術(shù)獎(jiǎng)和音樂獎(jiǎng)的7名學(xué)生中選取1名參加頒獎(jiǎng)大會(huì),求剛好是男生的概率;
(2)分別從獲得美術(shù)獎(jiǎng)、音樂獎(jiǎng)的學(xué)生中各選取1名參加頒獎(jiǎng)大會(huì),用列表或樹狀圖求剛好是一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的圖象經(jīng)過點(diǎn)A(2,-8),求:
(1)該拋物線的解析式;
(2)判斷點(diǎn)B(3,-18)是否在該拋物線上;
(3)求出此拋物線上縱坐標(biāo)是-50的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平而直角坐標(biāo)系中,一次函數(shù)y=﹣4x+4的圖象與x軸、y軸分別交于A、B兩點(diǎn).正方形ABCD的項(xiàng)點(diǎn)C、D在第一象限,頂點(diǎn)D在反比例函數(shù)y=(k≠0)的圖象上.若正方形ABCD向左平移n個(gè)單位后,頂點(diǎn)C恰好落在反比例函數(shù)的圖象上,則n的值是( 。
A.2B.3C.4.D.5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com