【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(﹣1,0)、C(2,3)兩點(diǎn),與y軸交于點(diǎn)N,其頂點(diǎn)為D.

(1)求拋物線及直線AC的函數(shù)關(guān)系式;

(2)若P是拋物線上位于直線AC上方的一個(gè)動(dòng)點(diǎn),求△APC的面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);

(3)設(shè)點(diǎn)M(3,n),求使MN+MD取最小值時(shí)n的值.

【答案】(1)y﹣x2+2x+3,y=x+1;(2)P();(3)

【解析】

1)利用待定系數(shù)法,以及點(diǎn)A(﹣1,0)、C(2,3)即可求得二次函數(shù)解析式、一次函數(shù)解析式

(2)過(guò)點(diǎn)PPQx軸交AC于點(diǎn)Q,交x軸于點(diǎn)H,設(shè)Pm,﹣m2+2m+3),,則點(diǎn)Qm,m+1),則可求得線段PQ=﹣(m2+,最后由圖示以及三角形的面積公式表示出APC 的面積,由二次函數(shù)最值的求法可知APC的面積的最大值;

(3)根據(jù)兩點(diǎn)之間線段最短過(guò)點(diǎn)N作與直線x=3的對(duì)稱(chēng)點(diǎn)N,連接DN′,,當(dāng)M(3,n在直線DN上時(shí),MN+MD的值最小.

(1)∵將點(diǎn)A和點(diǎn)C的坐標(biāo)代入拋物線的解析式得:,

解得:b=2,c=3.

∴拋物線的解析式為y﹣x2+2x+3.

設(shè)直線AC的解析式為y=kx+b.

∵將點(diǎn)A和點(diǎn)C的坐標(biāo)代入得,解得k=1,b=1.

∴直線AC的解析式為y=x+1.

(2)如圖,

設(shè)點(diǎn)P(m,﹣m2+2m+3),

Q(m,m+1),

PQ=(﹣m2+2m+3)﹣(m+1)=﹣m2+m+2=﹣(m﹣2+,

SAPC=PQ×|xC﹣xA|

= [﹣(m﹣2+3=﹣(m﹣2+,

∴當(dāng)m=時(shí),SAPC最大=,y=﹣m2+2m+3=,

P(,);

(3)如圖1所示,過(guò)點(diǎn)N作與直線x=3的對(duì)稱(chēng)點(diǎn)N′,連接DN′,交直線x=3與點(diǎn)M.

∵當(dāng)x=0時(shí)y3,

N(0,3).

∵點(diǎn)N與點(diǎn)N′關(guān)于x=3對(duì)稱(chēng),

N′(6,3).

y﹣x2+2x+3=﹣(x﹣1)2+4,

D(1,4).

設(shè)DN的解析式為y=kx+b.

將點(diǎn)N′與點(diǎn)D的坐標(biāo)代入得:

解得:k=﹣,b=

∴直線DN′的解析式為y=﹣x+

當(dāng)x=3時(shí),n=+=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊三角形ABC的邊長(zhǎng)為4,ADBC邊上的中線,FAD邊上的動(dòng)點(diǎn),EAC邊上一點(diǎn)AE2當(dāng)EFCF取得最小值時(shí),∠ECF的度數(shù)為( )

A. 20° B. 25° C. 30° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖:在△ABC中,∠B=90°,∠A=30°,BC=5cm,等腰RtDEF中,∠FDE=DE=3cm。動(dòng)點(diǎn)D、E始終在邊AB上,當(dāng)點(diǎn)DA點(diǎn)沿AC方向移動(dòng)。

1)在RtDEF沿AC方向移動(dòng)的過(guò)程中,F,C兩點(diǎn)之間的距離逐漸_______。(填“不變“變大”或“變小”)

2)當(dāng)F、C連線與AB平行時(shí),求AD的長(zhǎng)。

3)以線段AD、FCBC的長(zhǎng)度為三邊長(zhǎng)的三角形是直角三角形時(shí),求AD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線和直線.我們約定:當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2,若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M= y1=y2.

下列判斷: 當(dāng)x>2時(shí),M=y2;

當(dāng)x<0時(shí),x值越大,M值越大;

使得M大于4的x值不存在;

若M=2,則x= 1 .

其中正確的有

A.1個(gè) B.2個(gè) C. 3個(gè) D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】十一黃金周的某一天,小王全家上午8時(shí)自駕小汽車(chē)從家里出發(fā),到番茄農(nóng)莊游玩,小汽車(chē)離家的距離(千米)與小汽車(chē)離家后時(shí)間(時(shí))的關(guān)系可以用圖中的折線表示,根據(jù)圖像提供的有關(guān)信息,解答下列問(wèn)題:

1番茄農(nóng)莊離家________千米;

2)小王全家在番茄農(nóng)莊游玩了________小時(shí);

3)去時(shí)小汽車(chē)的平均速度是________千米/小時(shí);

4)回家時(shí)小汽車(chē)的平均速度是________千米/小時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】歡樂(lè)跑中國(guó)重慶站比賽前夕,小剛和小強(qiáng)相約晨練跑步.小剛比小強(qiáng)早1分鐘跑步出門(mén),3分鐘后他們相遇.兩人寒暄2分鐘后,決定進(jìn)行跑步比賽.比賽時(shí)小剛的速度始終是180/分,小強(qiáng)的速度是220/分.比賽開(kāi)始10分鐘后,因霧霾嚴(yán)重,小強(qiáng)突感身體不適,于是他按原路以出門(mén)時(shí)的速度返回,直到他們?cè)俅蜗嘤觯鐖D所示是小剛、小強(qiáng)之間的距離y(千米)與小剛跑步所用時(shí)間x(分鐘)之間的函數(shù)圖象.問(wèn)小剛從家出發(fā)到他們?cè)俅蜗嘤鰰r(shí),一共用了__分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知BD、CE是△ABC的高,MBC邊上的中點(diǎn),若△EMD是等腰直角三角形,則∠A=________°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),RtAOB中,∠A=90°,AOB=60°,OB=,AOB的平分線OCABC,過(guò)O點(diǎn)做與OB垂直的直線ON.動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿折線BCCO以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)O運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)沿折線COON以相同的速度運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)O時(shí)PQ同時(shí)停止運(yùn)動(dòng).

1)求OC、BC的長(zhǎng);

2)設(shè)CPQ的面積為S,求St的函數(shù)關(guān)系式;

3)當(dāng)POCQON上運(yùn)動(dòng)時(shí),如圖(2),設(shè)PQOA交于點(diǎn)M,當(dāng)t為何值時(shí),OPM為等腰三角形?求出所有滿足條件的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高速鐵路工程指揮部,要對(duì)某路段工程進(jìn)行招標(biāo),接到了甲、乙兩個(gè)工程隊(duì)的投標(biāo)書(shū).從投標(biāo)書(shū)中得知:甲隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)是乙隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)的:若由甲隊(duì)先做20天,剩下的工程再由甲、乙兩隊(duì)合作60天完成.

(1)求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需多少天?

(2)已知甲隊(duì)每天的施工費(fèi)用為8.6萬(wàn)元,乙隊(duì)每天的施工費(fèi)用為5.4萬(wàn)元,工程預(yù)算的施工費(fèi)用為1000萬(wàn)元.若在甲、乙工程隊(duì)工作效率不變的情況下使施工時(shí)間最短,問(wèn)擬安排預(yù)算的施工費(fèi)用是否夠用?若不夠用,需追加預(yù)算多少萬(wàn)元?

查看答案和解析>>

同步練習(xí)冊(cè)答案