【題目】如圖,正方形紙片ABCD的邊長為,對角線相交于點O,第1次將紙片折疊,使點A與點O重合,折痕與AO交于點P1;設P1O的中點為O1,第2次將紙片折疊,使點A與點O1重合,折痕與AO交于點P2;設P2O1的中點為O2,第3次將紙片折疊,使點A與點O2重合,折痕與AO交于點P3;…;設Pn-1On-2的中點為On-1,第n次將紙片折疊,使點A與點On-1重合,折痕與AO交于點Pn(n>2),則APn的長為__________

【答案】

【解析】分析:先根據(jù)正方形的性質(zhì)得到AO的長,再根據(jù)折疊的性質(zhì),依次得出AP1=×(1-1;AP2=×(2-1;AP3=×(3-1;……據(jù)此可得規(guī)律APn=×(n-1

詳解:∵正方形紙片ABCD的邊長為√22,對角線相交于點O,
∴AO=AC=×2=1,
由題可得:
AP1=P1O=AO==×(1-1;
∵P1O1=O1O=P1O=,
∴AO1=AO-O1O=1-=,
∴AP2=P2O1=AO1=×=×(2-1;
∵P2O2=O2O1=P2O1=×=
∴AO2=AO1-O2O1=-=,
∴AP3=P3O2=AO2=×=×(3-1;

由此可得,APn=×(n-1,
故答案為:×(n-1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為了解某校八年級學生每周平均課外閱讀時間的情況,隨機抽查了該校八年級部分學生,對其每周平均課外閱讀時間進行統(tǒng)計,根據(jù)統(tǒng)計數(shù)據(jù)繪制成如圖的兩幅尚不完整的統(tǒng)計圖:

1)本次共抽取了多少人?并請將圖1的條形圖補充完整;

2)這組數(shù)據(jù)的眾數(shù)是________;求出這組數(shù)據(jù)的平均數(shù);

3)若全校有1500,請你估計每周平均課外閱讀時間為3小時的學生多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一組數(shù)據(jù)3,44,5,若添加一個數(shù)4,則發(fā)生變化的統(tǒng)計量是( )

A.平均數(shù)B.眾數(shù)C.中位數(shù)D.方差

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將正方形A1B1C1O,A2B2C2C1,A3B3C3C2按如圖所示方式放置,點A1,A2,A3,和點C1C2,C3,分別在直線x軸上,則點B2019的橫坐標是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一個坡角為40°的斜坡上有一棵樹BC,樹高4米.當太陽光AC與水平線成70°角時,該樹在斜坡上的樹影恰好為線段AB,求樹影AB的長.(結(jié)果保留一位小數(shù))

(參考數(shù)據(jù):sin20°=0.34,tan20°=0.36,sin30°=0.50,tan30°=0.58,sin40°=0.64,tan40°=0.84,sin70°=0.94,tan70°=2.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,C,D是直線AB上的兩點,∠1+∠2=180°,DE平分∠CDF,EFAB.

(1)猜想:CEDF是否平行?請說明理由;

(2)若∠DCE=130°,求∠DEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是(  )

A. ABBC時四邊形ABCD是菱形

B. ACBD時四邊形ABCD是菱形

C. 當∠ABC90°時,四邊形ABCD是矩形

D. ACBD且∠ABC90°時四邊形ABCD是正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】滴滴打車是一種網(wǎng)上約車方式,更方便人們出行,小明國慶節(jié)第一天下午營運全是在安慶某大道南北走向的公路上進行,如果向南記作,向北記作。他這天下午行車情況如下:(單位:千米,每次行車都有乘客),,,,,請回答:

1)小明最后一名乘客送到目的地時,小明在下午出車的出發(fā)地的什么方向?距下午出車的出發(fā)地多遠?

2)若小明的出租車每千米油耗升,每升汽油元,這八次出車共耗油費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:是最小的兩位正整數(shù),且滿足,請回答問題:

(1)請直接寫出的值: ,=

(2)在數(shù)軸上所對應的點分別為A、BC ,點P為該數(shù)軸上的動點,其對應的數(shù)為,點P在點A與點C之間運動時(包含端點),則AP ,PC

(3)在(1)(2)的條件下,若點MA出發(fā),以每秒1個單位長度的速度向終點C移動,當點M運動到B點時,點NA出發(fā),以每秒3個單位長度向C點運動,N點到達C點后,再立即以同樣的速度返回點A,設點M 移動時間為t秒,當點N開始運動后,請用含t的代數(shù)式表示M、N兩點間的距離.

查看答案和解析>>

同步練習冊答案