【題目】如圖, 的周長為36,對角線AC,BD相交于點O,點ECD的中點,BD=12,求△DOE的周長.

【答案】DOE的周長為15

【解析】試題分析:根據(jù)平行四邊形的對邊相等和對角線互相平分可得,OB=OD,又因為E點是CD的中點,可得OEBCD的中位線,可得OE=BC,所以易求DOE的周長.

試題解析:∵平行四邊形ABCD的周長為36,

2BC+CD=36,則BC+CD=18

∵四邊形ABCD是平行四邊形,對角線AC,BD相交于點OBD=12,

OD=OB=BD=6

又∵點ECD的中點,

OEBCD的中位線,DE=CD

OE=BC,

∴△DOE的周長=OD+OE+DE=BD+BC+CD=6+9=15,

DOE的周長為15

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B、D、C、F在一條直線上,且BD=FC,AB=EF.

(1)請你只添加一個條件(不再加輔助線),使△ABC≌△EFD,你添加的條件是 ;

(2)添加了條件后,證明△ABC≌△EFD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,過點A作AGDB,交CB的延長線于點G,G=90°

求證:四邊形DEBF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】16的算術(shù)平方根和25的平方根的和是(  )
A.9
B.-1
C.9或﹣1
D.﹣9或1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系xOy中,O是坐標原點,以P11)為圓心的⊙Px軸、y軸分別相切于點M和點N,點F從點M出發(fā),沿x軸正方向以每秒1個單位長度的速度運動,連接PF,過點PPE⊥PFy軸于點E,設(shè)點F運動的時間是t秒(t0

1)若點Ey軸的負半軸上(如圖所示),求證:PE=PF

2)在點F運動過程中,設(shè)OE=a,OF=b,試用含a的代數(shù)式表示b;

3)作點F關(guān)于點M的對稱點F′,經(jīng)過M、EF′三點的拋物線的對稱軸交x軸于點Q,連接QE.在點F運動過程中,是否存在某一時刻,使得以點QO、E為頂點的三角形與以點P、MF為頂點的三角形相似?若存在,請直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關(guān)于x、y的二元一次方程組 的解滿足x﹣y>﹣8.
(1)用含m的代數(shù)式表示x﹣y.
(2)求滿足條件的m的所有正整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知三個實數(shù)a、b、c滿足a+b+c0ab+c0,則下列結(jié)論一定成立的是(

A.a+b≥0B.a+c0C.b+c≥0D.b24ac≥0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( 。

A.a3a4a12B.a5÷a3a2C.3a426a8D.(﹣a5aa6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分線,求∠A和∠CDB的度數(shù).

查看答案和解析>>

同步練習冊答案