【題目】已知二次函數(shù)(a>0)的圖象與x軸交于A、B兩點,(A在B左側(cè),且OA<OB),與y軸交于點C.
(1)求C點坐標,并判斷b的正負性;
(2)設這個二次函數(shù)的圖像的對稱軸與直線AC交于點D,已知DC:CA=1:2,直線BD與y軸交于點E,連接BC,
①若△BCE的面積為8,求二次函數(shù)的解析式;
②若△BCD為銳角三角形,請直接寫出OA的取值范圍.
【答案】(1)b<0;(2)①;②
【解析】
(1)把x=0代入,即可求得點C坐標,根據(jù) OA<OB,可知,由a>0即可求得b<0;
(2)①過點D作DM⊥y軸,垂足為M,則有,由此可得,設A(-2m,0)m>0,則AO=2m,DM=m,繼而可得D(m,-6),B(4m,0),AB=6m, BN=3m,再由DN//OE,可得△BND∽△BOE,繼而根據(jù)相似三角形的性質(zhì)可得OE=8,再根據(jù),可求得,由此可得A(-2,0),B(4,0),設,繼而可得C(0,-8a),再根據(jù)C點(0,-4)可求得a值,即可求得答案;
②由①易知:B(4m,0),C(0,-4),D(m,-6),∠CBD一定為銳角,利用勾股定理求得,然后分兩種情況進行討論即可得.
(1)當x=0時,=-4,
∴C(0,-4),
∵ OA<OB,∴對稱軸在y軸右側(cè),即,
∵a>0,∴b<0;
(2)①過點D作DM⊥y軸,垂足為M,則有DM//OA,
∴△DCM∽△ACO,
∴,
∴,
設A(-2m,0)m>0,則AO=2m,DM=m,
∵OC=4,∴CM=2,
∴D(m,-6),B(4m,0),AB=6m, BN=3m,
∵DN//OE,
∴△BND∽△BOE,
∴,
即,
∴OE=8,
∴CE=OE-OC=4,
∴,
∴,
∴A(-2,0),B(4,0),
設,
即,
令x=0,則y=-8a,
∴C(0,-8a),
∴-8a=-4,
∴a=,
∴;
②由①易知:B(4m,0),C(0,-4),D(m,-6),∠CBD一定為銳角,
由勾股定理可得:,
當∠CDB為銳角時,,
,
解得;
當∠BCD為銳角時,,
,
解得,
綜上:,
∴,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線.
(1)求證:該拋物線與x軸總有交點;
(2)若該拋物線與x軸有一個交點的橫坐標大于3且小于5,求m的取值范圍;
(3)設拋物線與軸交于點M,若拋物線與x軸的一個交點關于直線的對稱點恰好是點M,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC為等邊三角形,點E為△ABC內(nèi)部一點,△ABE繞點B順時針旋轉(zhuǎn)60°得到△CBD,且A、D、E三點在同一直線上,AD與BC交于點F,則以下結(jié)論中:①△BED為等邊三角形;②△BED與△ABC的相似比始終不變;③△BDE∽△ADB;④當∠BAE=45°時, 其中正確的有_____(填寫序號即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場舉辦抽獎活動,規(guī)則如下:在不透明的袋子中有2個紅球和2個黑球,這些球除顏色外都相同,顧客每次摸出一個球,若摸到紅球,則獲得1份獎品,若摸到黑球,則沒有獎品。
(1)如果小芳只有一次摸球機會,那么小芳獲得獎品的概率為 ;
(2)如果小芳有兩次摸球機會(摸出后不放回),求小芳獲得2份獎品的概率。(請用“畫樹狀圖”或“列表”等方法寫出分析過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使點D在邊AC上,點E、F在邊AB上,點G在邊BC上.
(1)證明小明所作的四邊形DEFG是菱形;
(2)小明進一步探索,發(fā)現(xiàn)可作出的菱形的個數(shù)隨著點D的位置變化而變化……請你繼續(xù)探索,直接寫出菱形的個數(shù)及對應的CD的長的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在ABCD中,E、F分別是AD、BC上的點,將平行四邊形ABCD沿EF所在直線翻折,使點B與點D重合,且點A落在點A′處.
(1)求證:△A′ED≌△CFD;
(2)連結(jié)BE,若∠EBF=60°,EF=3,求四邊形BFDE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們常見的炒菜鍋和鍋蓋都是拋物線面,經(jīng)過鍋心和蓋心的縱斷面是兩端拋物線組合而成的封閉圖形,不妨簡稱為“鍋線”,鍋口直徑為,鍋深,鍋蓋高(鍋口直徑與鍋蓋直徑視為相同),建立直角坐標系如圖①所示(圖②是備用圖),如果把鍋縱斷面的拋物線記為,把鍋蓋縱斷面的拋物線記為.
求和的解析式;
如果炒菜鍋時的水位高度是,求此時水面的直徑;
如果將一個底面直徑為,高度為的圓柱形器皿放入炒菜鍋內(nèi)蒸食物,鍋蓋能否正常蓋上?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=-3x+c與x軸相交于點A(1,0),與y軸相交于點B,拋物線y=-x2+bx+c經(jīng)過點A,B,與x軸的另一個交點是C.
(1)求拋物線的解析式;
(2)點P是對稱軸的左側(cè)拋物線上的一點,當S△PAB=2S△AOB時,求點P的坐標;
(3)連接BC,拋物線上是否存在點M,使∠MCB=∠ABO?若存在,請直接寫出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com