【題目】如圖,以△ABC的邊AB為直徑的⊙O與邊AC相交于點(diǎn)D,BC是⊙O的切線,E為BC的中點(diǎn),連接AE、DE.
(1)求證:DE是⊙O的切線;
(2)設(shè)△CDE的面積為 S1,四邊形ABED的面積為 S2.若 S2=5S1,求tan∠BAC的值;
(3)在(2)的條件下,若AE=3,求⊙O的半徑長.
【答案】(1)見解析;(2)tan∠BAC=;(3)⊙O的半徑=2.
【解析】
(1)連接DO,由圓周角定理就可以得出∠ADB=90°,可以得出∠CDB=90°,根據(jù)E為BC的中點(diǎn)可以得出DE=BE,就有∠EDB=∠EBD,OD=OB可以得出∠ODB=∠OBD,由等式的性質(zhì)就可以得出∠ODE=90°就可以得出結(jié)論.
(2)由S2=5 S1可得△ADB的面積是△CDE面積的4倍,可求得AD:CD=2:1,可得.則tan∠BAC的值可求;
(3)由(2)的關(guān)系即可知,在Rt△AEB中,由勾股定理即可求AB的長,從而求⊙O的半徑.
解:(1)連接OD,
∴OD=OB
∴∠ODB=∠OBD.
∵AB是直徑,
∴∠ADB=90°,
∴∠CDB=90°.
∵E為BC的中點(diǎn),
∴DE=BE,
∴∠EDB=∠EBD,
∴∠ODB+∠EDB=∠OBD+∠EBD,
即∠EDO=∠EBO.
∵BC是以AB為直徑的⊙O的切線,
∴AB⊥BC,
∴∠EBO=90°,
∴∠ODE=90°,
∴DE是⊙O的切線;
(2)∵S2=5 S1
∴S△ADB=2S△CDB
∴
∵△BDC∽△ADB
∴
∴DB2=ADDC
∴
∴tan∠BAC==.
(3)∵tan∠BAC=
∴,得BC=AB
∵E為BC的中點(diǎn)
∴BE=AB
∵AE=3,
∴在Rt△AEB中,由勾股定理得
,解得AB=4
故⊙O的半徑R=AB=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx﹣3與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),經(jīng)過A、B、C三點(diǎn)的圓的圓心M(1,m)恰好在此拋物線的對(duì)稱軸上,⊙M的半徑為.設(shè)⊙M與y軸交于D,拋物線的頂點(diǎn)為E.
(1)求m的值及拋物線的解析式;
(2)設(shè)∠DBC=α,∠CBE=β,求sin(α﹣β)的值;
(3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCE相似?若存在,請(qǐng)指出點(diǎn)P的位置,并直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一粒木質(zhì)中國象棋子“兵”,它的正面雕刻一個(gè)“兵”字,它的 反面是平的.將它從一定高度下擲,落地反彈后可能是“兵”字面朝上,也可能是 “兵”面朝下.由于棋子的兩面不均勻,為了估計(jì)“兵”字面朝上的機(jī)會(huì)大小,某 實(shí)驗(yàn)小組做了棋子下擲實(shí)驗(yàn),實(shí)驗(yàn)數(shù)據(jù)如下表:
實(shí)驗(yàn)次數(shù) | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 |
“兵”字面朝上頻數(shù) | 14 | 38 | 47 | 52 | 66 | 78 | 88 | |
“兵”字面朝上頻率 | 0.7 | 0.45 | 0.63 | 0.59 | 0.52 | 0.56 | 0.55 |
(1)請(qǐng)將數(shù)據(jù)表補(bǔ)充完整:
(2)在圖中畫出“兵”字面朝上的頻率分布折線圖:
(3)如果實(shí)驗(yàn)繼續(xù)進(jìn)行下去,根據(jù)上表的數(shù)據(jù),這個(gè)實(shí)驗(yàn)所得頻率將逐漸穩(wěn)定到某 一個(gè)數(shù)值附近,請(qǐng)你估計(jì)該隨機(jī)事件在每次實(shí)驗(yàn)時(shí)發(fā)生的機(jī)會(huì)大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AG⊥BC于點(diǎn)G,AF⊥DE于點(diǎn)F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠C=90°,BC=1,AC=4,把邊長分別為,,,…,的n個(gè)正方形依次放入△ABC中,則第n個(gè)正方形的邊長_______________(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(問題發(fā)現(xiàn))
如圖1,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,延長CA到點(diǎn)F,使得AF=AC,連接DF、BE,則線段BE與DF的數(shù)量關(guān)系為 ,位置關(guān)系為 ;
(2)(拓展研究)
將△ADE繞點(diǎn)A旋轉(zhuǎn),(1)中的結(jié)論有無變化?僅就圖(2)的情形給出證明;
(3)(解決問題)
當(dāng)AB=2,AD=,△ADE旋轉(zhuǎn)得到D,E,F三點(diǎn)共線時(shí),直接寫出線段DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】服裝廠準(zhǔn)備生產(chǎn)某種樣式的服裝40000套,分黑色和彩色兩種.
(1)若生產(chǎn)黑色服裝的套數(shù)不多于彩色服裝套數(shù)的,問最多生產(chǎn)多少套黑色服裝?
(2)目前工廠有100名工人,平均每人生產(chǎn)400套,由于展品會(huì)上此種樣式服裝大受歡迎,工廠計(jì)劃增加產(chǎn)量;由于條件發(fā)生變化,人均生產(chǎn)套數(shù)將減少1.25a%(20<a<30),要使生產(chǎn)總量增加10%,則工人需增加2.4a%,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(0,1),B(3,3),C(1,3),
(1)①畫出△ABC關(guān)于原點(diǎn)O的中心對(duì)稱圖形△A1B1C1;
②畫出△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到的△A2B2C2,寫出點(diǎn)C2的坐標(biāo);
(2)若△ABC上任意一點(diǎn)P(m,n)繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°的對(duì)應(yīng)點(diǎn)為Q,則點(diǎn)Q的坐標(biāo)為________.(用含m,n的式子表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com