【題目】我們在《有理數(shù)》這一章中學習過絕對值的概念:

一般的,數(shù)軸上表示數(shù)的點與原點的距離叫做數(shù)的絕對值,記作.

實際上,數(shù)軸上表示數(shù)的點與原點的距離可記作,數(shù)軸上表示數(shù)的點與表示數(shù)2的點的距離可記作,那么:

1)①數(shù)軸上表示數(shù)3的點與表示數(shù)1的點的距離可記作 .

②數(shù)軸上表示數(shù)的點與表示數(shù)2的點的距離可記作 .

③數(shù)軸上表示數(shù)的點與表示數(shù)的點的距離可記作 .

2)數(shù)軸上與表示數(shù)的點的距離為5的點有 個,它表示的數(shù)為 .

3)拓展:①當數(shù)取值為 時,數(shù)軸上表示數(shù)的點與表示數(shù)的點的距離最小.

②當整數(shù)取值為 時,式子有最小值為 .

③當取值范圍為 時,式子有最小值.

【答案】1)①,②,③;(2)點有2個,分別為3,;(3)①3;②;③.

【解析】

1)由題意中的例子類比即可得出答案;

2)分在表示數(shù)的點的左側(cè)或右側(cè)兩種情況討論即可;

3)根據(jù)點到點之間距離的最小時的相關情況求解即可.

1)由題意可得:

①數(shù)軸上表示數(shù)3的點與表示數(shù)1的點的距離可記作;

②數(shù)軸上表示數(shù)的點與表示數(shù)2的點的距離可記作

③數(shù)軸上表示數(shù)的點與表示數(shù)的點的距離可記作;

2)當該點在左側(cè)時,該點表示的數(shù)為:

當該點在右側(cè)時,該點表示的數(shù)為:;

故答案為:點有2個,分別為3;

3)①當數(shù)取值為時,數(shù)軸上表示數(shù)的點與表示數(shù)的點的距離最小;

②當整數(shù)取值為時,式子有最小值為3;

③當取值范圍為時,式子有最小值.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】北京時間2019410日人類首次直接拍攝到黑洞的照片,它是一個“超巨型”質(zhì)量黑洞,位于室女座星系團中一個超大質(zhì)量星系﹣M87的中心,距離地球5500萬光年.數(shù)據(jù)“5500萬光年”用科學記數(shù)法表示為(  )

A.5500×104光年B.055×108光年

C.5.5×103光年D.5.5×107光年

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a<0)的圖象與x軸的兩個交點A、B的橫坐標分別為﹣3、1,與y軸交于點C,下面四個結(jié)論:①16a+4b+c<0;②P(﹣5,y1),Q(,y2)是函數(shù)圖象上的兩點,則y1>y2;③c=﹣3a;④△ABC是等腰三角形,則b=﹣或﹣.其中正確的有_____.(請將正確結(jié)論的序號全部填在橫線上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖順次連接等腰梯形四邊中點得到一個四邊形,再順次連接所得四邊形四邊的中點得到的圖形是( )

A. 等腰梯形B. 直角梯形C. 菱形D. 矩形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】AB、CD四個車站的位置如圖所示:

(1)A、D兩站的距離;

(2)C、D兩站的距離;

(3)比較A、C兩站的距離與BD兩站的距離,哪兩站的距離更大?大多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,△ABCCA=CB,∠ACB=90°,直線l經(jīng)過點C,AFl于點F,BEl于點E

(1)求證:△ACF≌△CBE

(2)將直線旋轉(zhuǎn)到如圖2所示位置,DAB的中點連接DE.若AB=,∠CBE=30°,DE的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線;

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關系式和拋物線的頂點D坐標(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以直線AB上一點O為端點作射線 OC,使BOC=60°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)

(1)如圖1,若直角三角板DOE的一邊OD放在射線OB,COE= °;

(2)如圖2,將直角三角板DOE繞點O逆時針方向轉(zhuǎn)動到某個位置,OE恰好平分AOC,請說明OD所在射線是BOC的平分線

(3)如圖3,將三角板DOE繞點O逆時針轉(zhuǎn)動到某個位置時若恰好COD= AOEBOD的度數(shù)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面上,RtABC與直徑為CE的半圓O如圖1擺放,∠B=90°,AC=2CE=m,BC=n,半圓OBC邊于點D,將半圓O繞點C按逆時針方向旋轉(zhuǎn)D隨半圓O旋轉(zhuǎn)且ECD始終等于ACB,旋轉(zhuǎn)角記為α(0°≤α≤180°).

(1)α=0°連接DE,CDE=   °,CD=   

(2)試判斷旋轉(zhuǎn)過程中的大小有無變化?請僅就圖2的情形給出證明

(3)m=10,n=8,當旋轉(zhuǎn)的角度α恰為ACB的大小時,求線段BD的長;

(4)m=6,n=,當半圓O旋轉(zhuǎn)至與ABC的邊相切時,直接寫出線段BD的長

查看答案和解析>>

同步練習冊答案