【題目】2019中國北京世界園藝博覽會于2019年4月29日至10月7日在北京市延慶區(qū)舉辦,預(yù)售期門票價然有“平日票”和“推定日票”兩種,其中平日票的單價比指定日票的單價少40元1張:某學(xué)校計劃組織學(xué)生去參觀,用9600元購買的平日票的票數(shù)與用12800元購買的旅定日票的票數(shù)相等.
(1)求該學(xué)校購買的平日票、指定日票的單價分別是多少元?
(2)若兩種票共購買了200張,且購買的總費(fèi)用是28800元,求購買了多少張平日票?
【答案】(1)該學(xué)校購買的平日票、指定日票的單價分別是120元,160元;(2)購買了80張平日票.
【解析】
(1)設(shè)指定日票的單價為x元,表示出平日票的單價,根據(jù)題意列出方程,求出方程的解即可得到結(jié)果;(2)設(shè)購買平日票y張、指定日票(200﹣y)張,根據(jù)題意列出方程,求出方程的解即可得到結(jié)果.
(1)設(shè)指定日票的單價為x元,則平日票的單價為(x﹣40)元,
根據(jù)題意得:=,
去分母得:9600x=12800x﹣512000,
解得:x=160,
經(jīng)檢驗(yàn)x=160是分式方程的解,
∴x﹣40=160﹣40=120,
則該學(xué)校購買的平日票、指定日票的單價分別是120元,160元;
(2)設(shè)購買平日票y張、指定日票(200﹣y)張,
根據(jù)題意得:120y+160(200﹣y)=28800,
解得:y=80,
則購買了80張平日票.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB = AC,以AB為直徑的⊙O 分 別交AC,BC于點(diǎn) D,E,過點(diǎn)B作⊙O的切線, 交 AC的延長線于點(diǎn)F.
(1) 求證:∠CBF =∠CAB;
(2) 若CD = 2,,求FC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)A的坐標(biāo)是(-2,1),點(diǎn)C的縱坐標(biāo)是4,則點(diǎn)B的坐標(biāo)( )
A.( ,4)B.(,3)C.()D.( ,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于半徑為的⊙O,AC為直徑,AB=,弦BD與AC交于點(diǎn)E,點(diǎn)P為BD延長線上一點(diǎn),且∠PAD=∠ABD,過點(diǎn)A作AF⊥BD于點(diǎn)F,連接OF.
(1)求證:AP是⊙O的切線;
(2)求證:∠AOF=∠PAD;
(3)若tan∠PAD=,求OF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+2與y軸交于A點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)M,過M作MH⊥x軸于點(diǎn)H,且tan∠AHO=2.
(1)求k的值;
(2)在y軸上是否存在點(diǎn)B,使以點(diǎn)B、A、H、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出B點(diǎn)坐標(biāo);如果不存在,請說明理由;
(3)點(diǎn)N(a,1)是反比例函數(shù)y=(x>0)圖象上的點(diǎn),在x軸上有一點(diǎn)P,使得PM+PN最小,請求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組在探究函數(shù)y=x2﹣2|x|+3的圖象和性質(zhì)時,經(jīng)歷了以下探究過程:
(1)列表(完成下列表格).
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | 0 | 1 | 2 | 3 | … | |
y | … | 6 | 3 | 2 |
|
|
| 2 | 3 | 6 | … |
(2)描點(diǎn)并在圖中畫出函數(shù)的大致圖象;
(3)根據(jù)函數(shù)圖象,完成以下問題:
①觀察函數(shù)y=x2﹣2|x|+3的圖象,以下說法正確的有 (填寫正確的序號)
A.對稱軸是直線x=1;
B.函數(shù)y=x2﹣2|x|+3的圖象有兩個最低點(diǎn),其坐標(biāo)分別是(﹣1,2)、(1,2);
C.當(dāng)﹣1<x<1時,y隨x的增大而增大;
D.當(dāng)函數(shù)y=x2﹣2|x|+3的圖象向下平移3個單位時,圖象與x軸有三個公共點(diǎn);
E.函數(shù)y=(x﹣2)2﹣2|x﹣2|+3的圖象,可以看作是函數(shù)y=x2﹣2|x|+3的圖象向右平移2個單位得到.
②結(jié)合圖象探究發(fā)現(xiàn),當(dāng)m滿足 時,方程x2﹣2|x|+3=m有四個解.
③設(shè)函數(shù)y=x2﹣2|x|+3的圖象與其對稱軸相交于P點(diǎn),當(dāng)直線y=n和函數(shù)y=x2﹣2|x|+3圖象只有兩個交點(diǎn)時,且這兩個交點(diǎn)與點(diǎn)P所構(gòu)成的三角形是等腰直角三角形,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ACE中,∠AEC=90°,CB平分∠ACE交AE于點(diǎn)B,AC邊上一點(diǎn)O,⊙O經(jīng)過點(diǎn)B、C,與AC交于點(diǎn)D,與CE交于點(diǎn)F,連結(jié)BF。
(1)求證:AE是⊙O的切線;
(2)若,AE=8,求⊙O的半徑;
(3)在(2)條件下,求BF的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB = AC,以AB為直徑的⊙O 分 別交AC,BC于點(diǎn) D,E,過點(diǎn)B作⊙O的切線, 交 AC的延長線于點(diǎn)F.
(1) 求證:∠CBF =∠CAB;
(2) 若CD = 2,,求FC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁4人聚會,嗎,每人帶了一件禮物,4件禮物從外盒包裝看完全相同,將4件禮物放在一起.
(1)甲從中隨機(jī)抽取一件,則甲抽到不是自己帶來的禮物的概率是 ;
(2)甲先從中隨機(jī)抽取一件,不放回,乙再從中隨機(jī)抽取一件,求甲、乙2人抽到的都不是自己帶來的禮物的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com