【題目】小明同學在解一元二次方程時,他是這樣做的:

解一元二次方程

3x28x(x2)=0第一步

3x8x2=0第二步

5x2=0第三步

5x=2第四步

x=第五步

(1)小明的解法從第 步開始出現(xiàn)錯誤;此題的正確結(jié)果是

(2)用因式分解法解方程:x(2x1)=3(2x1).

【答案】(1)、第二步;x1=0,x2=;(2)、x1=,x2=3.

【解析】

試題分析:(1)、利用提取公因式法分解因式解方程得出即可;(2)、利用提取公因式法分解因式解方程得出即可.

試題解析:(1)、小明的解法從第2步開始出現(xiàn)錯誤;

3x28x(x2)=0 x[3x8(x2)]=0, 解得:x1=0,x2=,

故此題的正確結(jié)果是:x1=0,x2=,

(2)、x(2x1)=3(2x1) (2x1)(x3)=0,

解得:x1=,x2=3.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,書桌上的一種新型臺歷和一塊主板AB、一個架板AC和環(huán)扣(不計寬度,記為點A)組成,其側(cè)面示意圖為△ABC,測得AC⊥BC,AB=5cm,AC=4cm,現(xiàn)為了書寫記事方便,須調(diào)整臺歷的擺放,移動點C至C′,當∠C′=30°時,求移動的距離即CC′的長(或用計算器計算,結(jié)果取整數(shù),其中 =1.732, =4.583)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】多項式2x2﹣8因式分解的結(jié)果是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算
(1)(﹣2)3+( 2×22﹣(π﹣2)0
(2)5x2y÷(﹣ xy)3xy2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知E,F(xiàn)分別為正方形ABCD的邊BC,CD上的點,AF,DE相交于點G,當E,F(xiàn)分別為邊BC,CD的中點時,有:①AF=DE;②AF⊥DE成立.

試探究下列問題:

(1)如圖1,若點E不是邊BC的中點,F(xiàn)不是邊CD的中點,且CE=DF,上述結(jié)論①,②是否仍然成立?(請直接回答“成立”或“不成立”),不需要證明)

(2)如圖2,若點E,F(xiàn)分別在CB的延長線和DC的延長線上,且CE=DF,此時,上述結(jié)論①,②是否仍然成立?若成立,請寫出證明過程,若不成立,請說明理由;

(3)如圖3,在(2)的基礎(chǔ)上,連接AE和EF,若點M,N,P,Q分別為AE,EF,F(xiàn)D,AD的中點,請判斷四邊形MNPQ是“矩形、菱形、正方形”中的哪一種,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】單項式﹣2xy2z3的系數(shù)和次數(shù)是(
A.2,6
B.﹣2,6
C.﹣2,5
D.﹣2,3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某汽車制造廠開發(fā)一款新式電動汽車,計劃一年生產(chǎn)安裝240輛.由于抽調(diào)不出足夠的熟練工來完成新式電動汽車的安裝,工廠決定招聘一些新工人.他們經(jīng)過培訓后上崗,也能獨立進行電動汽車的安裝.生產(chǎn)開始后,調(diào)研部門發(fā)現(xiàn):1名熟練工和2名新工人每月可安裝8輛電動汽車;2名熟練工和3名新工人每月可安裝14輛電動汽車.
(1)每名熟練工和新工人每月分別可以安裝多少輛電動汽車?
(2)如果工廠招聘n(0<n<10)名新工人,使得招聘的新工人和抽調(diào)的熟練工剛好能完成一年的安裝任務,那么工廠有哪幾種新工人的招聘方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校舉行社會主義核心價值觀演講比賽,學校對30名參賽選手的成績進行了分組統(tǒng)計,結(jié)果如下表:

分數(shù)x(分)

4≤x5

5≤x6

6≤x7

7≤x8

8≤x9

9≤x10

頻數(shù)

2

6

8

5

5

4

由上可知,參賽選手分數(shù)的中位數(shù)所在的分數(shù)段為(  )

A. 5≤x6B. 6≤x7C. 7≤x8D. 8≤x9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】m,n是一元二次方程x2+x-12=0的兩根,則m+n+mn=______

查看答案和解析>>

同步練習冊答案