【題目】解方程(組)
(1)2(x﹣1)3+16=0.
(2);
(3).
(4)
【答案】(1) x=-1;(2);(3);(4).
【解析】
(1)根據(jù)立方根的定義先求出x-1的值,然后再解得x即可;
(2)利用加減法求解即可;
(3)利用加減法求解即可;
(4)利用加減法先消去解得x,y,再代入解得z即可.
解:(1)整理得,(x﹣1)3=-8,
開立方得,x-1=-2,
解得x=-1;
(2),
①+②得,4x=8,解得x=2,
將x=2代入①,解得y=1.
所以方程組的解為.
(3),
①×3+②×2得,23x=23,解得x=1.
將x=1代入①,解得,y=.
所以方程組的解為.
(4),
①+②得,3x+y=1③,
③-②得,x=1.
將x=1代入③,解得y=-2.
將x=1,y=-2代入①,解得z=3.
所以方程組的解為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3(a≠0)的頂點為E,該拋物線與x軸交于A(﹣1,0)、B(3,0)兩點,與y軸交于點C,直線y=﹣x+1與y軸交于點D.
(1)求拋物線的解析式;
(2)證明:△DBO∽△EBC;
(3)在拋物線的對稱軸上是否存在點P,使△PBC是等腰三角形?若存在,請直接寫出符合條件的P點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上的A、B兩點所表示的數(shù)分別為a、b,a+b<0,ab<0.
(1)原點O的位置在
A.點A的右邊
B.點B的左邊
C.點A與點B之間 ,且靠近點A
D.點A與點B之間 ,且靠近點B
(2)若a-b=2,
①利用數(shù)軸比較大小,a 1,b -1;(填“>”、“<”或“=”).
②化簡:|a-1|+|b+1|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以2為邊長的正方形DEFG的一邊GD在直線AB上,且點D與點A重合,現(xiàn)將正方形DEFG沿A﹣B的方向以每秒1個單位的速度勻速運動,當(dāng)點D與點B重合時停止,則在這個運動過程中,正方形DEFG與△ABC的重合部分的面積S與運動時間t之間的函數(shù)關(guān)系圖象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】線段AB的兩端點的坐標(biāo)為A(﹣1,0),B(0,﹣2).現(xiàn)請你在坐標(biāo)軸上找一點P,使得以P、A、B為頂點的三角形是直角三角形,則滿足條件的P點的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明過程:
如圖,AB∥CD,AD∥BC,BE平分∠ABC,DF平分∠ADC.
求證:BE∥DF.
證明:∵AB∥CD,(已知)
∴∠ABC+∠C=180°.( )
又∵AD∥BC,(已知)
∴ +∠C=180°.( )
∴∠ABC=∠ADC.( )
∵BE平分∠ABC,(已知)
∴∠1=∠ABC.( )
同理,∠2=∠ADC.
∴ =∠2.
∵AD∥BC,(已知)
∴∠2=∠3.( )
∴∠1=∠3,
∴BE∥DF.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間,某商場計劃購進(jìn)甲、乙兩種商品,已知購進(jìn)甲商品2件和乙商品3件共需270元;購進(jìn)甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進(jìn)價分別是多少元?
(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進(jìn)貨方案,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)(x>0)的圖象經(jīng)過點A,B,點A的坐標(biāo)為(1,2).過點A作AC∥y軸,AC=1(點C位于點A的下方),過點C作CD∥x軸,與函數(shù)的圖象交于點D,過點B作BE⊥CD,垂足E在線段CD上,連接OC,OD.
(1)求△OCD的面積;
(2)當(dāng)BE=AC時,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形 ABCD 中,對角線 AC 的垂直平分線交 AD 、BC 于點 E 、F , AC 與EF 交于點O ,連結(jié) AF 、CE 。
(1)求證:四邊形 AFCE 是菱形;
(2)若 AB 4, AD 8 ,求菱形 AFCE 的邊長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com