【題目】解方程(組)

12x13+16=0

2;

3

4

【答案】(1) x-1;(2;(3;(4.

【解析】

1)根據(jù)立方根的定義先求出x-1的值,然后再解得x即可;

2)利用加減法求解即可;

3)利用加減法求解即可;

4)利用加減法先消去解得x,y,再代入解得z即可.

解:(1)整理得,(x13-8,

開立方得,x-1-2,

解得x-1

2,

①+②得,4x=8,解得x=2,

x=2代入①,解得y=1

所以方程組的解為

3,

①×3+②×2得,23x23,解得x1

x1代入①,解得,y

所以方程組的解為

4,

①+②得,3xy1③,

③-②得,x1

x1代入③,解得y-2

x1,y-2代入①,解得z3

所以方程組的解為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx3a0)的頂點為E,該拋物線與x軸交于A10)、B3,0)兩點,與y軸交于點C,直線y=x+1y軸交于點D

(1)求拋物線的解析式;

(2)證明:△DBO∽△EBC;

(3)在拋物線的對稱軸上是否存在點P,使△PBC是等腰三角形?若存在,請直接寫出符合條件的P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上的A、B兩點所表示的數(shù)分別為a、bab0,ab0

1)原點O的位置在

A.點A的右邊

B.點B的左邊

C.點A與點B之間 ,且靠近點A

D.點A與點B之間 ,且靠近點B

2)若ab2,

①利用數(shù)軸比較大小,a 1b 1;(填“>”、“<”或“=”).

②化簡:|a1|+|b1|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中∠C=90°,BAC=30°,AB=8,以2為邊長的正方形DEFG的一邊GD在直線AB上,且點D與點A重合,現(xiàn)將正方形DEFG沿A﹣B的方向以每秒1個單位的速度勻速運動,當(dāng)點D與點B重合時停止,則在這個運動過程中,正方形DEFGABC的重合部分的面積S與運動時間t之間的函數(shù)關(guān)系圖象大致是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】線段AB的兩端點的坐標(biāo)為A(1,0),B(0,﹣2).現(xiàn)請你在坐標(biāo)軸上找一點P,使得以PA、B為頂點的三角形是直角三角形,則滿足條件的P點的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明過程:

如圖,ABCDADBC,BE平分∠ABCDF平分∠ADC

求證:BEDF

證明:∵ABCD,(已知)

∴∠ABC+∠C180°.(   

又∵ADBC,(已知)

   +∠C180°.(   

∴∠ABC=∠ADC.(   

BE平分∠ABC,(已知)

∴∠1ABC.(   

同理,∠2ADC

   =∠2

ADBC,(已知)

∴∠2=∠3.(   

∴∠1=∠3,

BEDF.(   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)期間,某商場計劃購進(jìn)甲、乙兩種商品,已知購進(jìn)甲商品2件和乙商品3件共需270元;購進(jìn)甲商品3件和乙商品2件共需230元.

(1)求甲、乙兩種商品每件的進(jìn)價分別是多少元?

(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進(jìn)貨方案,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)x>0)的圖象經(jīng)過點A,B,點A的坐標(biāo)為(1,2).過點AACy軸,AC1(點C位于點A的下方),過點CCDx軸,與函數(shù)的圖象交于點D,過點BBECD,垂足E在線段CD上,連接OC,OD

1)求△OCD的面積;

2)當(dāng)BEAC時,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形 ABCD 中,對角線 AC 的垂直平分線交 AD 、BC 于點 E 、F AC EF 交于點O ,連結(jié) AF 、CE 。

1)求證:四邊形 AFCE 是菱形;

2)若 AB 4, AD 8 ,求菱形 AFCE 的邊長。

查看答案和解析>>

同步練習(xí)冊答案