【題目】如圖,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以2為邊長的正方形DEFG的一邊GD在直線AB上,且點D與點A重合,現(xiàn)將正方形DEFG沿A﹣B的方向以每秒1個單位的速度勻速運動,當(dāng)點D與點B重合時停止,則在這個運動過程中,正方形DEFG與△ABC的重合部分的面積S與運動時間t之間的函數(shù)關(guān)系圖象大致是( )
A. B. C. D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,將一張矩形紙片 ABCD 沿著對角線 BD 向上折疊,頂點 C 落到點 E 處,BE交AD 于點 F.
(1)求證:△BDF 是等腰三角形;
(2)如圖 2,過點 D 作 DG∥BE,交 BC 于點 G,連接 FG 交 BD 于點 O.
①判斷四邊形 BFDG 的形狀,并說明理由;
②若 AD=AB+2,BD=10,求四邊形 BFDG 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點A(3,﹣2)在對稱軸為直線x=2的拋物線y=x2+bx+c的圖象上,其頂點為B.
(1)求頂點B的坐標(biāo);
(2)點C在對稱軸上,若△ABC的面積為2,求點C的坐標(biāo);
(3)將拋物線向左或右平移,使得新拋物線的頂點落在y軸上,問原拋物線上是否存在點M,平移后的對應(yīng)點為N,滿足OM=ON?如果存在,求出點M,N的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是16,點E在邊AB上,AE=3,點F是邊BC上不與點B,C重合的一個動點,把△EBF沿EF折疊,點B落在B′處.若△CDB′恰為等腰三角形,則DB′的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=α,點P是△ABC內(nèi)一點,且∠PAC+∠PCA=,連接PB,試探究PA、PB、PC滿足的等量關(guān)系.
(1)當(dāng)α=60°時,將△ABP繞點A逆時針旋轉(zhuǎn)60°得到△ACP′,連接PP′,如圖1所示.由△ABP≌△ACP′可以證得△APP′是等邊三角形,再由∠PAC+∠PCA=30°可得∠APC的大小為 度,進(jìn)而得到△CPP′是直角三角形,這樣可以得到PA、PB、PC滿足的等量關(guān)系為 ;
(2)如圖2,當(dāng)α=120°時,參考(1)中的方法,探究PA、PB、PC滿足的等量關(guān)系,并給出證明;
(3)PA、PB、PC滿足的等量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A點坐標(biāo)為(5,0),直線y=kx+b(b>0)與y軸交于點B,∠BCA=60°,連接AB,∠α=105°,則直線y=kx+b的表達(dá)式為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E為BC的中點,連接AE并延長交DC的延長線于點F.
(1)求證:AB=CF;
(2)當(dāng)BC與AF滿足什么數(shù)量關(guān)系時,四邊形ABFC是矩形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,A、B兩個旅游點從2010年至2014年“五、一”的旅游人數(shù)變化情況分別用實線和虛線表示.根據(jù)圖中所示解答以下問題:
(1)B旅游點的旅游人數(shù)相對上一年,增長最快的是哪一年?
(2)求A、B兩個旅游點從2010到2014年旅游人數(shù)的平均數(shù)和方差,并從平均數(shù)和方差的角度,用一句話對這兩個旅游點的情況進(jìn)行評價.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com