【題目】(2017廣東省深圳市)如圖,拋物線經(jīng)過點(diǎn)A(﹣1,0),B(4,0),交y軸于點(diǎn)C;
(1)求拋物線的解析式(用一般式表示);
(2)點(diǎn)D為y軸右側(cè)拋物線上一點(diǎn),是否存在點(diǎn)D使?若存在請(qǐng)直接給出點(diǎn)D坐標(biāo);若不存在,請(qǐng)說明理由;
(3)將直線BC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)45°,與拋物線交于另一點(diǎn)E,求BE的長.
【答案】(1);(2)D坐標(biāo)為(1,3)或(2,3)或(5,﹣3);(3).
【解析】試題(1)由A、B的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;
(2)由條件可求得點(diǎn)D到x軸的距離,即可求得D點(diǎn)的縱坐標(biāo),代入拋物線解析式可求得D點(diǎn)坐標(biāo);
(3)由條件可證得BC⊥AC,設(shè)直線AC和BE交于點(diǎn)F,過F作FM⊥x軸于點(diǎn)M,則可得BF=BC,利用平行線分線段成比例可求得F點(diǎn)的坐標(biāo),利用待定系數(shù)法可求得直線BE解析式,聯(lián)立直線BE和拋物線解析式可求得E點(diǎn)坐標(biāo),則可求得BE的長.
試題解析:
(1)∵拋物線經(jīng)過點(diǎn)A(﹣1,0),B(4,0),
∴,
解得:,
∴拋物線解析式為;
(2)由題意可知C(0,2),A(﹣1,0),B(4,0),
∴AB=5,OC=2,
∴S△ABC=ABOC=×5×2=5,
∵,
∴S△ABD=×5=,
設(shè)D(x,y),
∴AB|y|=×5|y|=,
解得|y|=3,
當(dāng)y=3時(shí),由=3,解得x=1或x=2,此時(shí)D點(diǎn)坐標(biāo)為(1,3)或(2,3);
當(dāng)y=﹣3時(shí),由=﹣3,解得x=﹣2(舍去)或x=5,此時(shí)D點(diǎn)坐標(biāo)為(5,﹣3);
綜上可知存在滿足條件的點(diǎn)D,其坐標(biāo)為(1,3)或(2,3)或(5,﹣3);
(3)∵AO=1,OC=2,OB=4,AB=5,
∴AC= =,BC==,
∴AC2+BC2=AB2,
∴△ABC為直角三角形,即BC⊥AC,
如圖,設(shè)直線AC與直線BE交于點(diǎn)F,過F作FM⊥x軸于點(diǎn)M,由題意可知∠FBC=45°,∴∠CFB=45°,
∴CF=BC=,
∴,即,解得OM=2,
,即,解得FM=6,
∴F(2,6),且B(4,0),
設(shè)直線BE解析式為y=kx+m,則可得:,解得:,
∴直線BE解析式為y=﹣3x+12,
聯(lián)立直線BE和拋物線解析式可得:,
解得:或,
∴E(5,﹣3),
∴BE= =.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,分別以點(diǎn)A和點(diǎn)B為圓心,大于AB的長為半徑畫弧,兩弧相交于點(diǎn)M,N,作直線MN,交BC于點(diǎn)D,連接AD.若△ADC的周長為10,AB=7,則△ABC的周長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC中,CD為△ABC的中線,點(diǎn)E在CD上,且∠AED=∠BCD.
(1)求證:AE=BC.
(2)如圖2,連接BE,若AB=AC=2DE,∠CBE=14°,則∠ACD的度數(shù)為 (直接寫出結(jié)果),
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】冬至是一年中太陽光照射最少的日子,如果此時(shí)樓房最低層能采到陽光,一年四季整座樓均能受到陽光照射,所以冬至是選房買房時(shí)確定陽光照射的最好時(shí)機(jī).吳江某居民小區(qū)有一朝向?yàn)檎戏较虻木用駱牵摼用駱堑囊粯鞘歉邽?/span>米的小區(qū)超市,超市以上是居民住房,現(xiàn)計(jì)劃在該樓前面米處蓋一棟新樓,已知吳江地區(qū)冬至正午的陽光與水平線夾角大約為.(參考數(shù)據(jù)在,)
中午時(shí),若要使得超市采光不受影響,則新樓的高度不能超過多少米?(結(jié)果保留整數(shù))
若新建的大樓高米,則中午時(shí),超市以上的居民住房采光是否受影響,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)交于A(2,4),B(a,1),與x軸,y軸分別交于點(diǎn)C,D.
(1)直接寫出一次函數(shù)y=kx+b的表達(dá)式和反比例函數(shù)y=(x>0)的表達(dá)式;
(2)求證:AD=BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知圖1和圖2中的四邊形ABCD都是正方形,△ABE的邊長分別為a,b,c,請(qǐng)你從圖1到圖2,圖2到圖3的變換過程中,利用幾何圖形的面積關(guān)系,求a,b,c之間的等量關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知AE∥BF,AE=BF,A、C、D、B在同一直線上,要使△ADE≌△BCF,可添加的一個(gè)條件可以是____________________.(寫一個(gè)即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AB=3,BC=4,點(diǎn)E是BC邊上一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處,當(dāng)△CEB′為直角三角形時(shí),BE的長為( )
A. 3 B. C. 2或3 D. 3或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年11月份,我縣教體局由縣城老區(qū)搬到了新區(qū)(海豐16路與棣新4路交叉口),當(dāng)時(shí)某科室需要把相關(guān)檔案由老區(qū)辦公樓搬到新區(qū)辦公樓,甲搬家公司單獨(dú)工作了3天,完成總量的;這時(shí)為了加快進(jìn)度,又調(diào)來乙搬家公司合干,兩隊(duì)又共同工作了3天,全部搬完檔案。假若在工作期間甲、乙兩搬家公司各自的工作效率不變,問若單獨(dú)干完這項(xiàng)工作哪個(gè)搬家公司的速度快?(用方程解答)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com