【題目】如圖,已知:∠MON=30°,點A1、A2、A3…在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A7B7A8的邊長為_____.
【答案】64
【解析】
根據(jù)等腰三角形的性質以及平行線的性質得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…進而得出答案.
解:∵△A1B1A2是等邊三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°﹣120°﹣30°=30°,
又∵∠3=60°,
∴∠5=180°﹣60°﹣30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=1,
∴A2B1=1,
∵△A2B2A3、△A3B3A4是等邊三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=4,
A4B4=8B1A2=8,
A5B5=16B1A2=16,
以此類推:A7B7=64B1A2=64.
故答案是:64
科目:初中數(shù)學 來源: 題型:
【題目】已知一列數(shù):1,―2,3,―4,5,―6,7,… 將這列數(shù)排成下列形式:
第1行 1
第2行 -2 3
第3行 -4 5 -6
第4行 7 -8 9 -10
第5行 11 -12 13 -14 15
… …
按照上述規(guī)律排下去,那么第10行從左邊數(shù)第5個數(shù)等于
A.50B.-50C.60D.-60
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(1)當∠BQD=30°時,求AP的長;
(2)證明:在運動過程中,點D是線段PQ的中點;
(3)當運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD和正方形AEFG,邊AE在邊AB上,AB=2AE=2.將正方形AEFG繞點A逆時針旋轉60°,BE的延長線交直線DG于點P ,旋轉過程中點P運動的路線長為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,點D在邊AB上,連結CD,將線段CD繞點C順時針旋轉90°至CE位置,連接AE.
(1)求證:AB⊥AE;
(2)若,求證:四邊形ADCE為正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①是一塊瓷磚的圖案用這種瓷磚來鋪設地面如果鋪成一個2×2的正方形圖案(如圖②),其中完整的圓共有5個,如果鋪成一個3×3的正方形圖案(如圖③),其中完整的圓共有13個,如果鋪成一個4×4的正方形圖案(如圖④),其中完整的圓共有25個,若這樣鋪成一個15×15的正方形圖案,則其中完整的圓共有( 。﹤.
A.365B.366C.420D.421
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于,AB是直徑,OD∥AC,AD=OC.
(1)求證:四邊形OCAD是平行四邊形;
(2)填空:①當∠B= 時,四邊形OCAD是菱形;
②當∠B= 時,AD與相切.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把正方體的六個面分別涂上六種不同的顏色,并畫上朵數(shù)不等的花,各面上的顏色與花的朵數(shù)情況見下表:
現(xiàn)將上述大小相同,顏色、花朵分布也完全相同的四個正方體拼成一個水平放置的長方體,如圖所示.問:長方體的下底面共有多少朵花?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一振子從點A開始左右來回振動8次,如果規(guī)定向右為正,向左為負,這8次振動的記錄為(單位:mm):+10,-9,+8,-6,+7.5,-6,+8,-7.
(1)求該振子停止時所在的位置距A點多遠?
(2)如果每毫米需用時間0.02 s,則完成8次振動共需要多少秒?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com