【題目】如圖,△ODC是由△OAB繞點O順時針旋轉30°后得到的圖形,若點D恰好落在AB上,且∠AOC的度數(shù)為100°,則∠B的度數(shù)是(
A.40°
B.35°
C.30°
D.15°

【答案】B
【解析】解:∵△COD是△AOB繞點O順時針旋轉40°后得到的圖形,

∴∠AOD=∠BOC=30°,AO=DO,

∵∠AOC=100°,

∴∠BOD=100°﹣30°×2=40°,

∠ADO=∠A= (180°﹣∠AOD)= (180°﹣30°)=75°,

由三角形的外角性質得,∠B=∠ADO﹣∠BOD=75°﹣40°=35°.

故選B.

【考點精析】利用旋轉的性質對題目進行判斷即可得到答案,需要熟知①旋轉后對應的線段長短不變,旋轉角度大小不變;②旋轉后對應的點到旋轉到旋轉中心的距離不變;③旋轉后物體或圖形不變,只是位置變了.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小敏和小強到某廠參加社會實踐活動,該廠用白板紙做包裝盒,每張白板紙可裁成3個盒身或5個盒蓋,且一個盒身和兩個盒蓋恰好能做成一個包裝盒.設裁成盒身的白板紙有x張,請回答下列問題:

(1)若有11張白板紙.

①請完成下表:

②問:最多可做多少個包裝盒.

(2)若倉庫中已有4個盒身,3個盒蓋和23張白板紙,現(xiàn)把白板紙分成兩部分,一部分裁成盒身,一部分裁成盒蓋.當盒身與盒蓋全部配套用完時,可做多少個包裝盒?

(3)若有n張白板紙(70≤n≤80),先把一張白板紙裁出2個盒身和1個盒蓋(余下一點邊角料不要),剩下白板紙分成兩部分,一部分裁成盒身,一部分裁成盒蓋.當盒身與盒蓋全部配套用完時,n的值可以是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:我們把分一條線段為兩條相等線段的點稱為線段的中點.如圖1所示,則稱點M為線段AB的中點.

問題解決:

1)如圖2所示,點A、BC、DE在數(shù)軸上的對應的數(shù)分別為﹣2、﹣10、12,則圖2中,線段AC的中點是點   ,點C是線段   和線段   的中點,線段AB的中點對應的數(shù)是   ,線段BE的中點對應的數(shù)是   

2)如圖3,點E、F對應的數(shù)分別是e、f,則線段EF的中點對應的數(shù)為   (用含e、f的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各題:

1)(﹣x2+3y)(﹣2xy

2[5xy2x23xy+3x2y235xy2

3)(﹣4x3y2)(3y24x

4)(a+b)(a2ab+b2

5aab22bab)(a+b

610002998×1002(簡便運算).

7)(3a2+)(3a2b)(9a4b2

8)(a2ab+b2)(a2+ab+b2).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,BAC=120°,B=30°,ADAB,垂足為A,CD=1 cm,AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】聰聰是一位非常喜歡動腦筋的初一學生,特別是學了幾何后,更覺得數(shù)學奇妙,當聰聰學完圖形的初步知識后對角平分線興趣更濃厚,下面請你和聰聰同學一起來探究奇妙的角平分線吧已知,射線OEOF分別是的角平分線.

如圖1,若射線OC的內(nèi)部,且,求的度數(shù);

如圖2,若射線OC的內(nèi)部繞點O旋轉,且,求的度數(shù);

若射線OC的外部繞點O旋轉旋轉中,均指小于的角,其余條件不變,請借助圖3探究的大小,請直接寫出的度數(shù)不寫探究過程

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,∠BAC50°,∠BAC的平分線與AB的中垂線交于點O,點C沿EF折疊后與點O重合,則∠CEO的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OM平分AOB,MCOB,MDOB于D,若OMD=75°,OC=8,則MD的長為( )

A.2 B.3 C.4 D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,點A(-2,1)、B(-3,4),C(-5,2)均在格點上.在所給直角坐標系中解答下列問題:

(1)將△ABC平移得到△A1B1C1,使得點B的對應點B1與原點O重合,在所給直角坐標系中畫出圖形;

(2)在圖中畫出△ABC關于y軸對稱的△A2B2C2

(3)在x軸上找一點P,使得△PAB2的周長最小,請直接寫出點P的坐標.

查看答案和解析>>

同步練習冊答案