【題目】堅(jiān)持農(nóng)業(yè)農(nóng)村優(yōu)先發(fā)展,按照產(chǎn)業(yè)興旺、生態(tài)宜居的總要求,統(tǒng)籌推進(jìn)農(nóng)村經(jīng)濟(jì)建設(shè).洛寧縣某村出售特色水果(蘋果).規(guī)定如下:
品種 | 購買數(shù)量低于50箱 | 購買數(shù)量不低于50箱 |
新紅星 | 原價(jià)銷售 | 以八折銷售 |
紅富士 | 原價(jià)銷售 | 以九折銷售 |
如果購買新紅星40箱,紅富士60箱,需付款4300元;如果購買新紅星100箱,紅富士35箱,需付款4950元.
(1)每箱新紅星、紅富士的單價(jià)各多少元?
(2)某單位需要購置這兩種蘋果120箱,其中紅富士的數(shù)量不少于新紅星的一半,并且不超過60箱,如何購買付款最少?請說明理由.
【答案】(1)每箱新紅星40元,紅富士50元;(2)購買新紅星70箱,紅富士50箱總費(fèi)用最少,為4490元.
【解析】
(1)根據(jù)題意結(jié)合表格中數(shù)據(jù),列出方程組求解即可;
(2)利用已知得出x的取值范圍,再利用一次函數(shù)增減性得出答案.
解:(1)設(shè)每箱新紅星單價(jià)元,紅富士單價(jià)元,
由題意得:,
解得,
答:每箱新紅星40元,紅富士50元;
(2)設(shè)買新紅星箱,總費(fèi)用為,
由題意得:,
解得:,
∴,
∴在的范圍內(nèi),當(dāng)x=70時(shí),,
在的范圍內(nèi),當(dāng)x=80時(shí),,
∴當(dāng)時(shí),即購買新紅星70箱,紅富士50箱總費(fèi)用最少,為4490元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過A作BC的平行線交CE的延長線與F,且AF=BD,連接BF。
(1)求證:D是BC的中點(diǎn);
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△OAB的邊OB在x軸上,過點(diǎn)A的反比例函數(shù)y=的圖象交AB于點(diǎn)C,且AC:CB=2:1,S△OAC=,則k的值為( 。
A.B.C.2D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為5的正方形中,以B為圓心,BA為半徑作弧AC,F為弧AC上一動(dòng)點(diǎn),過點(diǎn)F作⊙B的切線交AD于點(diǎn)P,交DC于點(diǎn)Q.
(1)求證:PQ=AP+CQ;
(2)分別延長PQ、BC,延長線相交于點(diǎn)M,如果AP=2,求BM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線在坐標(biāo)系中的位置如圖所示,它與,軸的交點(diǎn)分別為,,是其對稱軸上的動(dòng)點(diǎn),根據(jù)圖中提供的信息,給出以下結(jié)論:①,②是的一個(gè)根,③若,,則.其中正確的有______個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,E為AB的中點(diǎn).
(1)將線段AB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)一定角度,使點(diǎn)A與點(diǎn)B重合,點(diǎn)B與點(diǎn)C重合,用無刻度直尺作出點(diǎn)O的位置,保留作圖痕跡;
(2)將△ABD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)某個(gè)角度,得到△CFD,使DA與DC重合,用無刻度直尺作出△CFD,保留作圖痕跡.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊的邊與軸交于點(diǎn),點(diǎn)是反比例函數(shù)圖像上的一點(diǎn),且,則等邊的邊長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,過原點(diǎn)的拋物線與軸交于另一點(diǎn),拋物線頂點(diǎn)的坐標(biāo)為,其對稱軸交軸于點(diǎn).
(1)求拋物線的解析式;
(2)如圖2,點(diǎn)為拋物線上位于第一象限內(nèi)且在對稱軸右側(cè)的一個(gè)動(dòng)點(diǎn),求使面積最大時(shí)點(diǎn)的坐標(biāo);
(3)在對稱軸上是否存在點(diǎn),使得點(diǎn)關(guān)于直線的對稱點(diǎn)滿足以點(diǎn)、、、為頂點(diǎn)的四邊形為菱形.若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】合與實(shí)踐﹣﹣探究圖形中角之間的等量關(guān)系及相關(guān)問題.
問題情境:
正方形ABCD中,點(diǎn)P是射線DB上的一個(gè)動(dòng)點(diǎn),過點(diǎn)C作CE⊥AP于點(diǎn)E,點(diǎn)Q與點(diǎn)P關(guān)于點(diǎn)E對稱,連接CQ,設(shè)∠DAP=α(0°<α<135°),∠QCE=β.
初步探究:
(1)如圖1,為探究α與β的關(guān)系,勤思小組的同學(xué)畫出了0°<α<45°時(shí)的情形,射線AP與邊CD交于點(diǎn)F.他們得出此時(shí)α與β的關(guān)系是β=2α.借助這一結(jié)論可得當(dāng)點(diǎn)Q恰好落在線段BC的延長線上(如圖2)時(shí),α= °,β= °;
深入探究:
(2)敏學(xué)小組的同學(xué)畫出45°<α<90°時(shí)的圖形如圖3,射線AP與邊BC交于點(diǎn)G.請猜想此時(shí)α與β之間的等量關(guān)系,并證明結(jié)論;
拓展延伸:
(3)請你借助圖4進(jìn)一步探究:①當(dāng)90°<α<135°時(shí),α與β之間的等量關(guān)系為 ;
②已知正方形邊長為2,在點(diǎn)P運(yùn)動(dòng)過程中,當(dāng)α=β時(shí),PQ的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com