【題目】如圖,點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)B在直線y=x上運(yùn)動(dòng),當(dāng)線段AB最短時(shí),點(diǎn)B的坐標(biāo)為

【答案】(﹣ ,﹣
【解析】解:先過(guò)點(diǎn)A作AB′⊥OB,垂足為點(diǎn)B′,

由垂線段最短可知,當(dāng)B′與點(diǎn)B重合時(shí)AB最短,
∵點(diǎn)B在直線y=x上運(yùn)動(dòng),
∴△AOB′是等腰直角三角形,
過(guò)B′作B′C⊥x軸,垂足為C,
∴△B′CO為等腰直角三角形,
∵點(diǎn)A的坐標(biāo)為(﹣1,0),
∴OC=CB′= OA= ×1= ,
∴B′坐標(biāo)為(﹣ ,﹣ ),
即當(dāng)線段AB最短時(shí),點(diǎn)B的坐標(biāo)為(﹣ ,﹣ ).
故答案為:(﹣ ,﹣ ).
先過(guò)點(diǎn)A作AB′⊥OB,垂足為點(diǎn)B′,由于點(diǎn)B在直線y=x上運(yùn)動(dòng),所以△AOB′是等腰直角三角形,由勾股定理求出OB′的長(zhǎng)即可得出點(diǎn)B′的坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD邊長(zhǎng)為8cm,F(xiàn)G是等腰直角△EFG的斜邊,F(xiàn)G=10cm,點(diǎn)B、F、C、G都在直線l上,△EFG以1cm/s的速度沿直線l向右做勻速運(yùn)動(dòng),當(dāng)t=0時(shí),點(diǎn)G與B重合,記t(0≤t≤8)秒時(shí),正方形與三角形重合部分的面積是Scm2 , 則S與t之間的函數(shù)關(guān)系圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人都去同一家超市購(gòu)買大米各兩次,甲每次購(gòu)買50千克的大米,乙每次購(gòu)買50元的大米,這兩人第一次購(gòu)買大米時(shí)售價(jià)為每千克m元,第二次購(gòu)買大米時(shí)售價(jià)為每千克n(m≠n),若規(guī)定誰(shuí)兩次購(gòu)買大米的平均單價(jià)低,誰(shuí)的購(gòu)買方式就合算,則下列觀點(diǎn)正確的是(  )

A. 甲的購(gòu)買方式合算 B. 乙的購(gòu)買方式合算

C. 甲、乙的購(gòu)買方式同樣合算 D. 不能判斷誰(shuí)的購(gòu)買方式合算

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的面積為1,則以相鄰兩邊中點(diǎn)連線EF為邊的正方形EFGH的周長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】a是一個(gè)長(zhǎng)為2m、寬為2n的長(zhǎng)方形,沿圖中實(shí)現(xiàn)用剪刀均分成四塊小長(zhǎng)方形,然后按圖b的形狀拼成一個(gè)正方形.

(1)圖b中,大正方形的邊長(zhǎng)是   .陰影部分小正方形的邊長(zhǎng)是   ;

(2)觀察圖b,寫出(m+n2,(mn2,mn之間的一個(gè)等量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC 中,AD 是高,∠BAD=60°,∠CAD=20°,AE 平分∠BAC,則∠EAD 的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,Am,0),B(0,n,且mn滿足m﹣2)20.

(1)SABO;

(2)點(diǎn)Cy軸負(fù)半軸上一點(diǎn),BDCACA的延長(zhǎng)線于點(diǎn)D,若∠BAD=∠CAO,求的值;

(3)點(diǎn)Ey軸負(fù)半軸上一點(diǎn),OHAEHHO,AB的延長(zhǎng)線交于點(diǎn)FGy軸正半軸上一點(diǎn),且BGOEFG,EA的延長(zhǎng)線交于點(diǎn)P,求證:點(diǎn)P的縱坐標(biāo)是定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以正方形ABCD的邊AD作等邊ADE,則∠BEC的度數(shù)是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案