【題目】如圖,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為圓心,2為半徑畫⊙O,P⊙O上一動(dòng)點(diǎn),且P在第一象限內(nèi),過點(diǎn)P⊙O的切線與軸相交于點(diǎn)A,與軸相交于點(diǎn)B

1)點(diǎn)P在運(yùn)動(dòng)時(shí),線段AB的長度頁在發(fā)生變化,請(qǐng)寫出線段AB長度的最小值,并說明理由;

2)在⊙O上是否存在一點(diǎn)Q,使得以Q、O、A、P為頂點(diǎn)的四邊形時(shí)平行四邊形?若存在,請(qǐng)求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由。

【答案】1)線段AB長度的最小值為4

理由如下:

連接OP因?yàn)?/span>AB⊙OP,所以OP⊥AB

AB的中點(diǎn)C,則…………3

當(dāng)時(shí),OC最短,

AB最短,此時(shí)…………4

2)設(shè)存在符合條件的點(diǎn)Q

如圖,

設(shè)四邊形APOQ為平行四邊形,

因?yàn)樗倪呅?/span>APOQ為矩形

又因?yàn)?/span>

所以四邊形APOQ為正方形

所以

Rt△OQA中,根據(jù)

Q點(diǎn)坐標(biāo)為()。 …………7

如圖,設(shè)四邊形APQO為平行四邊形

因?yàn)?/span>OQ∥PA,

所以,

又因?yàn)?/span>

所以,

因?yàn)?PQ∥OA,

所以軸。

設(shè)軸于點(diǎn)H,

Rt△OHQ中,根據(jù),

Q點(diǎn)坐標(biāo)為(

所以符合條件的點(diǎn)Q的坐標(biāo)為()或()。

【解析】

1)如圖,設(shè)AB的中點(diǎn)為C,連接OP,由于AB是圓的切線,故△OPC是直角三角形,有OPOC,所以當(dāng)OCOP重合時(shí),OC最短;

2)分兩種情況:如圖(1),當(dāng)四邊形APOQ是正方形時(shí),△OPA△OAQ都是等腰直角三角形,可求得點(diǎn)Q的坐標(biāo)為(),如圖(2),可求得∠QOP=∠OPA=90°,由于OP=OQ,故△OPQ是等腰直角三角形,可求得點(diǎn)Q的坐標(biāo)為(,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為圓O的直徑,點(diǎn)C為圓O上一點(diǎn),若∠BAC=∠CAM,過點(diǎn)C作直線l垂直于射線AM,垂足為點(diǎn)D.

(1)試判斷CD與圓O的位置關(guān)系,并說明理由;

(2)若直線lAB的延長線相交于點(diǎn)E,圓O的半徑為3,并且∠CAB=30°,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)請(qǐng)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出點(diǎn)A1的坐標(biāo).

(2)請(qǐng)畫出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后的△A2BC2

(3)求出(2)中C點(diǎn)旋轉(zhuǎn)到C2點(diǎn)所經(jīng)過的路徑長(結(jié)果保留根號(hào)和π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E、F分別在邊AB、BC上,ADE=CDF.

(1)求證:AE=CF;

(2)連結(jié)DB交EF于點(diǎn)O,延長OB至點(diǎn)G,使OG=OD,連結(jié)EG、FG,判斷四邊形DEGF是否是菱形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)

如圖,臺(tái)風(fēng)中心位于點(diǎn)P,并沿東北方向PQ移動(dòng),已知臺(tái)風(fēng)移動(dòng)的速度為30千米/時(shí),受影響區(qū)域的半徑為200千米,B市位于點(diǎn)P的北偏東75°方向上,距離點(diǎn)P 320千米處.

(1) 說明本次臺(tái)風(fēng)會(huì)影響B市;

2求這次臺(tái)風(fēng)影響B市的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC90°,AC的垂直平分線分別與ACBCAB的延長線相交于點(diǎn)D,E,F,且BFBC.⊙O△BEF的外接圓,連結(jié)BD.

(1)求證:△ABC≌△EBF

(2)試判斷BD⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是⊙O外一點(diǎn),PA,PB分別和⊙O切于A,B兩點(diǎn),C是弧AB上任意一點(diǎn),過點(diǎn)C作⊙O的切線分別交PA,PB于點(diǎn)D,E.PDE的周長為12,則PA的長為(   )

A. 12 B. 6 C. 8 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段A′B′,那么A(﹣2,5)的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016雙十一期間,某快遞公司計(jì)劃租用甲、乙兩種車輛快遞貨物,從貨物量來計(jì)算:若租用兩種車輛合運(yùn),10天可以完成任務(wù);若單獨(dú)租用乙種車輛,完成任務(wù)的天數(shù)是單獨(dú)租用甲種車輛完成任務(wù)天數(shù)的2倍.

(1)求甲、乙兩種車輛單獨(dú)完成任務(wù)分別需要多少天?

(2)已知租用甲、乙兩種車輛合運(yùn)需租金65000元,甲種車輛每天的租金比乙種車輛每天的租金多1500元,試問:租甲和乙兩種車輛、單獨(dú)租甲種車輛、單獨(dú)租乙種車輛這三種租車方案中,哪一種租金最少?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案