【題目】如圖, 是半圓的直徑,點是延長線上 一點, 是⊙的切線,切點為,過點作交的延長線于點,連接.求證:
().
().
【答案】(1)證明見解析;(2)證明見解析.
【解析】試題分析:(1)連接OC,由PC為⊙的切線,利用切線的性質(zhì)得到OC⊥PC,再由BD⊥PD,得到一對直角相等,利用同位角相等兩直線平行得到OC與BD平行,進(jìn)而得到一對內(nèi)錯角相等,再由OB=OC,利用等邊對等角得到一對角相等,等量代換即可得證;
(2)連接AC,由AB為⊙的直徑,利用圓周角定理得到∠ACB為直角,利用兩對角相等的三角形相似得到△ABC與△CBD相似,利用相似三角形對應(yīng)邊成比例,變形即可得證.
證明:()連接,
∵與圓相切,
∴,即,
∵,
∴,
∴,
∴,
∴,
∵,
∴,
∴;
()連接,
∵為圓的直徑,
∴,
∴,
∵,
∴,
∴,
則.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教練想從甲、乙兩名運動員中選拔一人參加射擊錦標(biāo)賽,故先在射擊隊舉行了一場選拔比賽.在相同的條件下各射靶次,每次射靶的成績情況如圖所示.
甲射靶成績的條形統(tǒng)計圖 | 乙射靶成績的折線統(tǒng)計圖 |
()請你根據(jù)圖中的數(shù)據(jù)填寫下表:
平均數(shù) | 眾數(shù) | 方差 | |
甲 | __________ | ||
乙 | __________ | __________ |
()根據(jù)選拔賽結(jié)果,教練選擇了甲運動員參加射擊錦標(biāo)賽,請給出解釋.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2-x-(m+1)=0有兩個不相等的實數(shù)根.
(1)求m的取值范圍;
(2)若m為符合條件的最小整數(shù),求此方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4.M、N在對角線AC上,且AM=CN,E、F分別是AD、BC的中點.
(1)求證:△ABM≌△CDN;
(2)點G是對角線AC上的點,∠EGF=90°,求AG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長分別為和的兩個正方形和并排放在一起,連結(jié)并延長交于點,交于點,則
A. B. 2 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,垂足為,為直線上一動點(不與點重合),在的右側(cè)作,使得,連接.
(1)求證:;
(2)當(dāng)在線段上時
① 求證:≌;
② 若, 則;
(3)當(dāng)CE∥AB時,若△ABD中最小角為20°,試探究∠ADB的度數(shù)(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求證:CD⊥AB.請將下面的推理過程補充完整.
證明:FH⊥AB(已知)
∴∠BHF= °.( )
∵∠1=∠ACB(已知)
∴DE∥BC( )
∴∠2= .( )
∵∠2=∠3(已知)
∴∠3= .( )
∴CD∥FH( )
∴∠BDC=∠BHF= °.( )
∴CD⊥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E是BC的中點,連接AE并延長交DC的延長線于點F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在菱形ABCD 中,點E,O,F分別是邊AB,AC,AD的中點,連接CE、CF、OE、OF.當(dāng)AB與BC滿足___________條件時,四邊形AEOF正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com