【題目】如圖,在⊙O中,分別將、沿兩條互相平行的弦AB、CD折疊,折疊后的弧均過圓心,若⊙O的半徑為4,則四邊形ABCD的面積是( 。

A.8B.C.32D.

【答案】B

【解析】

OOHAB交⊙OE,延長EOCDG,交⊙OF,連接OAOB,OD,根據(jù)平行線的性質(zhì)得到EFCD,根據(jù)折疊的性質(zhì)得到OH=OA,進(jìn)而推出△AOD是等邊三角形,得到D,O,B三點共線,且BD為⊙O的直徑,求得∠DAB=90°,同理,∠ABC=ADC=90°,得到四邊形ABCD是矩形,于是得到結(jié)論.

OOHAB交⊙OE,延長EOCDG,交⊙OF,連接OA,OB,OD

ABCD,∴EFCD

∵分別將、沿兩條互相平行的弦AB、CD折疊,折疊后的弧均過圓心,∴OH=OA,∴∠HAO=30°,∴∠AOH=60°,同理∠DOG=60°,∴∠AOD=60°,∴△AOD是等邊三角形.

OA=OB,∴∠ABO=BAO=30°,∴∠AOB=120°,∴∠AOD+AOB=180°,∴DO,B三點共線,且BD為⊙O的直徑,∴∠DAB=90°,同理,∠ABC=ADC=90°,∴四邊形ABCD是矩形,∴AD=AO=4,AB=AD=4,∴四邊形ABCD的面積是16

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x22kx+3k+4

1)拋物線經(jīng)過原點時,求k的值.

2)頂點在x軸上時,求k的值;

3)頂點在y軸上時,求k的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線x軸,y軸分別交于B,C兩點,拋物線 經(jīng)過B,C兩點,點A是拋物線與x軸的另一個交點.

(1)求出點B和點C的坐標(biāo).

(2)求此拋物線的函數(shù)解析式.

(3)在拋物線x軸上方存在一點P(不與點C重合),使,請求出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場要建一個飼養(yǎng)場(矩形ABCD)兩面靠現(xiàn)有墻(AD位置的墻最大可用長度為27米,AB位置的墻最大可用長度為15米),另兩邊用木欄圍成,中間也用木欄隔開,分成兩個場地及一處通道,并在如圖所示的三處各留1米寬的門(不用木欄)。建成后木欄總長45米。設(shè)飼養(yǎng)場(矩形ABCD)的一邊AB長為x米.

(1)飼養(yǎng)場另一邊BC= 米(用含x的代數(shù)式表示).

(2)若飼養(yǎng)場的面積為180平方米,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,以為直徑作⊙,分別交于點,.

(1)求證:;

(2),求的度數(shù);

(3)過點作⊙的切線,交的延長線于點,當(dāng)時,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(閱讀)x與代數(shù)式x2+2x1的部分對應(yīng)值如表:

x

3

2

1

0

1

x2+2x1

2

1

2

1

2

可知:當(dāng)x=﹣3時,x2+2x120,當(dāng)x=﹣2時,x2+2x1=﹣10,所以方程x2+2x10的一個解在﹣3和﹣2之間.

(理解)(1)方程x2+2x10的另一個解在兩個連續(xù)整數(shù)      之間.

(應(yīng)用)(2)若關(guān)于x的一元二次方程﹣x2+2x+m0的一個解在12之間,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的口袋中有4個大小、質(zhì)地完全相同的乒乓球,球面上分別標(biāo)有數(shù)-1,2,-3,4

1)搖勻后任意摸出1個球,則摸出的乒乓球球面上的數(shù)是負(fù)數(shù)的概率為________

2)搖勻后先從中任意摸出1個球(不放回),再從余下的3個球中任意摸出1個球,用列表或畫樹狀圖的方法求兩次摸出的乒乓球球面上的數(shù)之和是正數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了弘揚優(yōu)秀傳統(tǒng)文化,某校組織了一次詩詞大會,小明和小麗同時參加,其中,有一道必答題是:從如圖所示的九宮格中選取七個字組成一句唐詩,其答案為兩個黃鸝鳴翠柳”.

(1)小明回答該問題時,對第二個字是選還是選難以抉擇,若隨機(jī)選擇其中一個,則小明回答正確的概率是__________;

(2)小麗回答該問題時,對第二個字是選還是選、第五個字是選還是選都難以抉擇,若分別隨機(jī)選擇,請用列表或畫樹狀圖的方法求小麗回答正確的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線頂點為A1,2),且過原點,與x軸的另一個交點為B,

1)求拋物線的解析式和B點坐標(biāo);

2)拋物線上是否存在點M,使△OBM的面積等于2?若存在,請寫出M點坐標(biāo),若不存在,說明理由;

查看答案和解析>>

同步練習(xí)冊答案