【題目】某市在“五水共治”中新建成一個(gè)污水處理廠.已知該廠庫(kù)池中存有待處理的污水a噸,另有從城區(qū)流入庫(kù)池的待處理污水(新流入污水按每小時(shí)b噸的定流量增加).若污水處理廠同時(shí)開(kāi)動(dòng)2臺(tái)機(jī)組,需30小時(shí)處理完污水;若同時(shí)開(kāi)動(dòng)3臺(tái)機(jī)組.需15小時(shí)處理完污水.現(xiàn)要求恰好用5個(gè)小時(shí)將污水處理完畢,則需同時(shí)開(kāi)動(dòng)的機(jī)組數(shù)為( 。

A.6臺(tái)B.7臺(tái)C.8臺(tái)D.9臺(tái)

【答案】B

【解析】

設(shè)1臺(tái)機(jī)組每小時(shí)處理污水v噸,要在5小時(shí)內(nèi)處理完污水,至少需開(kāi)動(dòng)x臺(tái)機(jī)組,根據(jù)題意列出方程組,將求得的值再代入不等式,求不等式的解集即可.

解:根據(jù)題意列二元一次方程組:設(shè)每臺(tái)機(jī)器每小時(shí)處理s(噸)

解得:a=30sb=1s,

設(shè)需同時(shí)開(kāi)動(dòng)的機(jī)組數(shù)為x臺(tái),

s,

x=7.

答:要在5小時(shí)內(nèi)處理完污水,至少需同時(shí)開(kāi)動(dòng)7臺(tái)機(jī)組.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線ABCD,點(diǎn)F為直線AB上一點(diǎn),G為射線BD上一點(diǎn).若∠HDG2CDH,∠GBE2EBF,HDBE于點(diǎn)E,則∠E的度數(shù)為(  )

A.45B.60°C.65°D.無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)【問(wèn)題發(fā)現(xiàn)】

如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,則線段BE與AF的數(shù)量關(guān)系為   

(2)【拓展研究】

在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無(wú)變化?請(qǐng)僅就圖2的情形給出證明;

(3)【問(wèn)題發(fā)現(xiàn)】

當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí)候,直接寫(xiě)出線段AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:關(guān)于x的方程x2﹣(2m+1)x+2m=0

(1)求證:方程一定有兩個(gè)實(shí)數(shù)根;

(2)若方程的兩根為x1,x2,且|x1|=|x2|,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一個(gè)平臺(tái)遠(yuǎn)處有一座古塔,小明在平臺(tái)底部的點(diǎn)C處測(cè)得古塔頂部B的仰角為60°,在平臺(tái)上的點(diǎn)E處測(cè)得古塔頂部的仰角為30°.已知平臺(tái)的縱截面為矩形DCFE,DE=2米,DC=20米,求古塔AB的高(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷(xiāo)售店在草莓銷(xiāo)售旺季,試銷(xiāo)售成本為每千克20元的草莓,規(guī)定試銷(xiāo)期間銷(xiāo)售單價(jià)不低于成本單價(jià),也不高于每千克40元,經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量y(千克)與銷(xiāo)售單價(jià)x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.

(1)求y與x的函數(shù)解析式;

(2)設(shè)該水果銷(xiāo)售店試銷(xiāo)草莓獲得的利潤(rùn)為W元,求W的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)E,F在直線AB上,點(diǎn)G在線段CD上,EDFG交于點(diǎn)H,∠C=EFG,∠CED=GHD

1)求證:CEGF;

2)試判斷∠AED與∠D之間的數(shù)量關(guān)系,并說(shuō)明理由;

3)若∠EHF=70°,∠D=30°,求∠AEM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了盡快的適應(yīng)中招體考項(xiàng)目,現(xiàn)某校初二(1)班班委會(huì)準(zhǔn)備籌集1800元購(gòu)買(mǎi)A、B兩種類型跳繩供班級(jí)集體使用.

(1)班委會(huì)決定,購(gòu)買(mǎi)A種跳繩的資金不少于B種跳繩資金的2倍,問(wèn)最多用多少資金購(gòu)買(mǎi)B種跳繩?

(2)經(jīng)初步統(tǒng)計(jì),初二(1)班有25人自愿參與購(gòu)買(mǎi),那么平均每生需交72元.初三(1)班了解情況后,把體考后閑置的跳繩贈(zèng)送了若干給初二(1)班,這樣只需班級(jí)共籌集1350元.經(jīng)初二(1)班班委會(huì)進(jìn)一步宣傳,自愿參與購(gòu)買(mǎi)的學(xué)生在25人的基礎(chǔ)上增加了4a%.則每生平均交費(fèi)在72元基礎(chǔ)上減少了2.5a%,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)A點(diǎn)的一次函數(shù)的圖象與正比例函數(shù)y=2x的圖象相交于點(diǎn)B.

(1)求一次函數(shù)的解析式

(2)判斷點(diǎn)C(4,-2)是否在該一次函數(shù)的圖象上,說(shuō)明理由;

(3)若該一次函數(shù)的圖象與x軸交于D點(diǎn),求BOD的面積

查看答案和解析>>

同步練習(xí)冊(cè)答案