【題目】為了解某校“陽(yáng)光體育”活動(dòng)的開展情況,從該校1000名學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查(每名學(xué)生只能填寫一項(xiàng)自己最喜歡的體育項(xiàng)目),并將調(diào)查結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中信息,解答下列問題:

1)被調(diào)查的學(xué)生共有多少人?

2)扇形統(tǒng)計(jì)圖中m的值和a的度數(shù)分別是多少?

3)根據(jù)部分學(xué)生最喜歡體育項(xiàng)目的調(diào)查情況,請(qǐng)估計(jì)全校學(xué)生中最喜歡籃球的人數(shù)大約有多少?

【答案】150;(24057.6°;(3400.

【解析】

1)根據(jù)乒乓球的占比為24%和抽取的人數(shù),利用部分量÷部分量占比=總量即可解題,2)先求出喜歡籃球的人數(shù),進(jìn)而即可求出m的值和a的度數(shù),3)用喜歡籃球的百分比乘以總?cè)藬?shù)即可解題.

解:(1)被調(diào)查的學(xué)生共有12÷24%50(人);

2)根據(jù)題意,喜歡籃球的人數(shù)為50﹣(4+12+6+8)=20,

m%×100%40%,即m40,

扇形圖中a的度數(shù)為360°×57.6°

3)估計(jì)全校學(xué)生中最喜歡籃球的人數(shù)大約有1000×40%400(人).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:∠MON=36°,OE平分∠MON,點(diǎn)AB分別是射線OM,OE,上的動(dòng)點(diǎn)(A,B不與點(diǎn)O重合),點(diǎn)D是線段OB上的動(dòng)點(diǎn),連接AD并延長(zhǎng)交射線ON于點(diǎn)C,設(shè)∠OAC=x,

1)如圖1,若ABON,則

①∠ABO的度數(shù)是______

②當(dāng)∠BAD=ABD時(shí),x=______

當(dāng)∠BAD=BDA時(shí),x=______;

2)如圖2,若ABOM,則是否存在這樣的x的值,使得ABD中有兩個(gè)相等的角?若存在,求出x的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線經(jīng)過點(diǎn)

1)求直線的解析式;

2)把直線向右平移并與軸相交于得到,請(qǐng)?jiān)谌鐖D所示平面直角坐標(biāo)系中作出直線;

3)若直線軸交于點(diǎn),與直線交于點(diǎn),求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,,,且,分別以AB、為邊向梯形外作正方形,其面積分別為、,則、、之間數(shù)量的關(guān)系是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,的平分線于點(diǎn),的平分線于點(diǎn)

求證:四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,對(duì)角線,交于點(diǎn),的中點(diǎn),點(diǎn)的延長(zhǎng)線上,且

1)求證:四邊形是平行四邊形;

2)當(dāng)線段之間滿足什么條件時(shí),四邊形是矩形?并說明理由;

3)當(dāng)線段之間滿足什么條件時(shí),四邊形是正方形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=ax+b的圖像與正比例函數(shù)y=kx的圖像交于點(diǎn)M,

(1)求正比例函數(shù)和一次函數(shù)的解析式;

(2)根據(jù)圖像寫出使正比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍;

(3)求ΔMOP的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,對(duì)角線AC、BD相交于點(diǎn)ODHAB于點(diǎn)H,連接OH,∠CAD=35°,則∠HOB的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一方有難八方支援,某市政府籌集了抗旱必需物資120噸打算運(yùn)往災(zāi)區(qū),現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運(yùn)載能力和運(yùn)費(fèi)如下表所示:(假設(shè)每輛車均滿載)

(1)若全部物資都用甲、乙兩種車型來運(yùn)送,需運(yùn)費(fèi)8200元,問分別需甲、乙兩種車型各幾輛?

(2)為了節(jié)約運(yùn)費(fèi),該市政府可以調(diào)用甲、乙、丙三種車型參與運(yùn)送,已知它們的總輛數(shù)為 16輛,你能通過列方程組的方法分別求出幾種車型的輛數(shù)嗎?

(3)求出哪種方案的運(yùn)費(fèi)最。孔钍∈嵌嗌僭?

查看答案和解析>>

同步練習(xí)冊(cè)答案