【題目】如圖,方格紙中的每個小正方格都是邊長為1的正方形,我們把以格點間連接為邊的三角形稱為“格點三角形”,圖中的就是格點三角形,在建立平面直角坐標(biāo)系后,O是坐標(biāo)原點,B、C兩點的坐標(biāo)分別為(3-1)、(2,1)

1)以O點為位似中心在軸的左側(cè)將OBC放大兩倍(即新圖與原圖的相似比為2),在該坐標(biāo)系中畫出圖形;

2)分別寫出B、C兩點的對應(yīng)點B′、C′的坐標(biāo);

3)如果OBC內(nèi)部一點M的坐標(biāo)為(x,y),寫出M的對應(yīng)點M′的坐標(biāo).

【答案】1)見解析;(2B′(-62),C′(- 4- 2) ;(3(- 2x, - 2y)

【解析】

1)根據(jù)題意作圖即可,

2)在坐標(biāo)軸里直接找出坐標(biāo),

3)根據(jù)對應(yīng)的點坐標(biāo)的關(guān)系直接寫出坐標(biāo).

解:(1)

2)由圖知:B′(-6,2),C′(- 4- 2)

3)根據(jù)位似中心找到M的對應(yīng)點M′的縱橫坐標(biāo)分別是M縱橫坐標(biāo)的2倍,

(- 2x, - 2y)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,為半徑的中點,過交弦于點,交于點,且.

1)求證:的切線;

2)連接,求的度數(shù);

3)若,,求的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖

1)方法體驗:

如圖1,點P在矩形ABCD的對角線AC上,且不與點A,C重合,過點P分別作邊AB,AD的平行線,交兩組對邊于點E,FGH,容易證明四邊形PEDH和四邊形PFBG是面積相等的矩形,分別連結(jié)EG,FH

①根據(jù)矩形PEDH和矩形PFBG面積相等的關(guān)系,那么PE·PH=

②求證:EGFH

2)方法遷移:

如圖2,已知直線 分別與x軸,y軸交于D,C兩點,與雙曲線 交于A,B兩點. 求證:AC=BD

3)知識應(yīng)用:

如圖3,反比例函數(shù) x0)的圖象與矩形ABCO的邊BC交于點D,與邊AB交于點E, 直線DEx軸,y軸分別交于點F,G .若矩形ABCO的面積為10,ODGODF的面積比為35,則k=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)戶要改造部分農(nóng)田種植蔬菜.經(jīng)調(diào)查,改造農(nóng)田費用(元)與改造面積(畝)成正比,比例系數(shù)為900,添加輔助設(shè)備費用(元)與改造面積(畝)的平方成正比,比例系數(shù)為18,以上兩項費用三年內(nèi)不需再投入;每畝種植蔬菜還需種子、人工費用600.這項費用每年均需再投入.除上述費用外,沒有其他費用.設(shè)改造畝,每畝蔬菜年銷售額為

1)設(shè)改造當(dāng)年收益為元,用含的式子表示;

2)按前三年計算,若,是否改造面積越大收益越大?改造面積為多少時,可以得到最大收益?

3)按前三年計算,若,當(dāng)收益不低于43200元時,求改造面積的取值范圍.

注:收益銷售額(改造費輔助設(shè)備費種子、人工費)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,ADCD于點D.EAB延長線上一點,CE交⊙O于點F,連結(jié)OC,AC.

(1)求證AC平分∠DAO;

(2)若∠DAO=105°,E=30°.①求∠OCE的度數(shù).②若⊙O的半徑為,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,動點PA點出發(fā),按A→B→C的方向在ABBC上移動,記PA=x,點D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線x軸于AB兩點(A在點B的左側(cè)),與y軸交于點C

1)求點AB、C的坐標(biāo);

2)若點M為拋物線的頂點,連接BC、CM、BM,求△BCM的面積;

3)連接AC,在x軸上是否存在點P使△ACP為等腰三角形,若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,//,且分別交對角線AC于點E,F,連接BE,DF

1)求證:AE=CF;

2)若BE=DE,求證:四邊形EBFD為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,AB的直徑,C上一點,P的中點,過點PAC的垂線,交AC的延長線于點D

1)求證:DP的切線;

2)若AC=5,AP的長.

查看答案和解析>>

同步練習(xí)冊答案