如圖,直線(xiàn)與x軸、y軸分別交于A、B,以線(xiàn)段AB為直角邊在第一象限內(nèi)作等腰直角△ABC,∠BAC=90°.在第二象限內(nèi)有一點(diǎn),且△ABP的面積與△ABC的面積相等.則△ABC的面積是    ;a=   
【答案】分析:根據(jù)題意,易得A、B點(diǎn)的坐標(biāo),可得AB的長(zhǎng),又有△ABC是等腰直角三角形,進(jìn)而可得△ABC的面積,已知△ABP的面積與△ABC的面積相等,即P到直線(xiàn)AB的距離與AC長(zhǎng)度相等,列出關(guān)系式可得P的坐標(biāo),進(jìn)而可得a的值.
解答:解:根據(jù)題意,直線(xiàn)與x軸、y軸分別交于A、B,
則A(,0),B(0,1),
即OA=,OB=1,則AB=2;
又有△ABC是等腰直角三角形,即AB=AC=2,∠BAC=90°,
則S△ABC=×AB×AC=2;
同時(shí)又有△ABP的面積與△ABC的面積相等,
則即P到直線(xiàn)AB的距離與AC長(zhǎng)度相等,即到AB的距離為2,
可得:||=2,
解可得||=2,
=2或=-2,

解得:a=±4,P在第二象限,
故a=-4;
故答案為2,-4.
點(diǎn)評(píng):本題有一定難度,需要認(rèn)真分析題意,結(jié)合兩點(diǎn)間的距離、點(diǎn)到直線(xiàn)的距離進(jìn)行解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線(xiàn)與x軸、y軸分別交于A、B兩點(diǎn).
(1)將直線(xiàn)AB繞原點(diǎn)O沿逆時(shí)針?lè)较蛐D(zhuǎn)90°得到直線(xiàn)A1B1
請(qǐng)?jiān)凇洞痤}卡》所給的圖中畫(huà)出直線(xiàn)A1B1,此時(shí)直線(xiàn)AB與A1B1的位置關(guān)系為
 
(填“平行”或“垂直”);
(2)設(shè)(1)中的直線(xiàn)AB的函數(shù)表達(dá)式為y1=k1x+b1,直線(xiàn)A1B1的函數(shù)表達(dá)式為y2=k2x+b2,則k1•k2=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線(xiàn)與x軸、y軸交于A、B兩點(diǎn),且OA=OB=1,點(diǎn)P是反比例函數(shù)y=
1
2x
圖象在第一象限的分支上的任意一點(diǎn),P點(diǎn)坐標(biāo)為(a,b),由點(diǎn)P分別向x軸,y軸作垂線(xiàn)PM、PN,垂足分別為M、N;PM、PN分別與直線(xiàn)交于點(diǎn)E,點(diǎn)F.
(1)設(shè)交點(diǎn)E、F都在線(xiàn)段AB上,分別求出點(diǎn)E、點(diǎn)F的坐標(biāo);(用含a的代數(shù)式表示)
(2)△AOF與△BOE是否一定相似?如果一定相似,請(qǐng)予以證明;如果不一定相似或一定不相似,請(qǐng)簡(jiǎn)短說(shuō)明理由;
(3)當(dāng)點(diǎn)P在曲線(xiàn)上移動(dòng)時(shí),△OEF隨之變動(dòng),指出在△OEF的三個(gè)內(nèi)角中,大小始終保持不變的那個(gè)角和它的大小,并證明你的結(jié)論;
(4)在雙曲線(xiàn)y=
1
2x
上是否存在點(diǎn)P,使點(diǎn)P到直線(xiàn)AB的距離最短的點(diǎn),若存在,請(qǐng)求出點(diǎn)P的坐標(biāo)及最短距離;若不存在,說(shuō)明理由
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

3、如圖,直線(xiàn)與y軸的交點(diǎn)是(0,-3),則當(dāng)x<0時(shí),( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線(xiàn)與x軸、y軸分別交于A、B兩點(diǎn).
(1)將直線(xiàn)AB繞原點(diǎn)O沿逆時(shí)針?lè)较蛐D(zhuǎn)90°得到直線(xiàn)A1B1.請(qǐng)?jiān)凇洞痤}卡》所給的圖中畫(huà)出直線(xiàn)A1B1,此時(shí)直線(xiàn)AB與A1B1的位置關(guān)系為
垂直
垂直
(填“平行”或“垂直”)
(2)設(shè)(1)中的直線(xiàn)AB的函數(shù)表達(dá)式為y1=k1x+b1,直線(xiàn)A1B1的函數(shù)表達(dá)式為y2=k2x+b2,則k1•k2=
-1
-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011屆寧夏銀川市初三上學(xué)期期末數(shù)學(xué)卷 題型:解答題

如圖①,直線(xiàn)與x軸、y軸分別交于B、C兩點(diǎn),點(diǎn)A在x軸負(fù)半軸上,且,拋物線(xiàn)經(jīng)過(guò)A、B、C三點(diǎn),D為線(xiàn)段AB中點(diǎn),點(diǎn)P(m,n)是該拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn)(其中m>0,n<0),連接DP交BC于點(diǎn)E.

(1)寫(xiě)出A、B、C三點(diǎn)的坐標(biāo),并求拋物線(xiàn)的解析式;(5分)
(2) 當(dāng)△BDE是等腰三角形時(shí),直接寫(xiě)出此時(shí)點(diǎn)E的坐標(biāo);(3分)
(3)連結(jié)PC、PB,△PBC是否有最大面積?若有,求出△PBC的最大面積和此時(shí)P點(diǎn)的坐標(biāo);若沒(méi)有,請(qǐng)說(shuō)明理由。(3分)

查看答案和解析>>

同步練習(xí)冊(cè)答案