【題目】如圖,⊙O上有一個(gè)動(dòng)點(diǎn)A和一個(gè)定點(diǎn)B,令線段AB的中點(diǎn)是點(diǎn)P,過點(diǎn)B作⊙O的切線BQ,且BQ=3,現(xiàn)測(cè)得的長(zhǎng)度是,的度數(shù)是120°,若線段PQ的最大值是m,最小值是n,則mn的值是( 。
A. 3 B. 2 C. 9 D. 10
【答案】C
【解析】
連接OP,OB,O′點(diǎn)為OB的中點(diǎn),如圖,先利用弧長(zhǎng)公式計(jì)算出⊙O的半徑為2,再利用垂徑定理得到OP⊥AB,則∠OPB=90°,于是利用圓周角定理得到點(diǎn)P在以OB為直徑的圓上,直線QO′交⊙O′于E、F,如圖,根據(jù)切線的性質(zhì)得到OB⊥PQ,則利用勾股定理可計(jì)算出O′Q=,利用點(diǎn)與圓的位置關(guān)系得到m=+1,n=-1,然后計(jì)算mn即可.
連接OP,OB,O′點(diǎn)為OB的中點(diǎn),如圖,
設(shè)⊙O的半徑為r,
根據(jù)題意得π,解得r=2,
∵P點(diǎn)為AB的中點(diǎn),
∴OP⊥AB,
∴∠OPB=90°,
∴點(diǎn)P在以OB為直徑的圓上,
直線QO′交⊙O′于E、F,如圖,
∴BQ為切線,
∴OB⊥PQ,
在Rt△O′BQ中,O′Q==,
∴QE=+1,QF=-1,
即m=+1,n=-1,
∴mn=(+1)(-1)=10-1=9.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出定義,若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱該四邊形為勾股四邊形.
(1)在你學(xué)過的特殊四邊形中,寫出兩種勾股四邊形的名稱;
(2)如圖,將△ABC繞頂點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)60°得到△DBE,連接AD,DC,CE,已知∠DCB=30°.
①求證:△BCE是等邊三角形;
②求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,現(xiàn)有兩點(diǎn)M、N分別從點(diǎn)A、點(diǎn)B同時(shí)出發(fā),沿三角形的邊運(yùn)動(dòng),已知點(diǎn)M的速度為每秒1個(gè)單位長(zhǎng)度,點(diǎn)N的運(yùn)度為每秒2個(gè)單位長(zhǎng)度當(dāng)點(diǎn)M第一次到達(dá)B點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng).
點(diǎn)M、N運(yùn)動(dòng)幾秒后,M、N兩點(diǎn)重合?
點(diǎn)M、N運(yùn)動(dòng)幾秒后,可得到等邊三角形?
當(dāng)點(diǎn)M、N在BC邊上運(yùn)動(dòng)時(shí),能否得到以MN為底邊的等腰?如存在,請(qǐng)求出此時(shí)M、N運(yùn)動(dòng)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O直徑,C是半圓上一點(diǎn),連接BC、AC,過點(diǎn)O作OD∥BC與過點(diǎn)A的切線交于點(diǎn)D,連接DC并延長(zhǎng)交AB的延長(zhǎng)線于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若AE=3,CE=,求線段CE、BE與劣弧BC所圍成的圖形面積(結(jié)果保留根號(hào)和π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為坐標(biāo)原點(diǎn),點(diǎn)C的坐標(biāo)為(1,0),∠ACB=90°,∠B=30°,當(dāng)點(diǎn)A在反比例函數(shù)y=的圖象上運(yùn)動(dòng)時(shí),點(diǎn)B在函數(shù)_____(填函數(shù)解析式)的圖象上運(yùn)動(dòng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD、CE分別是∠ABC、∠BCD的平分線,則圖中的等腰三角形有( )
A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系中的點(diǎn),若點(diǎn)的坐標(biāo)為(其中為常數(shù),且)則稱點(diǎn)為點(diǎn)的“系雅培點(diǎn)”;
例如:的“3系雅培點(diǎn)”為,即.
(1)點(diǎn)的“2系雅培點(diǎn)”的坐標(biāo)為 ;
(2)若點(diǎn)在軸的正半軸上,點(diǎn)的“系雅培點(diǎn)”為點(diǎn),若在△中,,求的值;
(3)已知點(diǎn)在第四象限,且滿足;點(diǎn)是點(diǎn)的“系雅培點(diǎn)”,若分式方程無解,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某品牌汽車公司銷售部為了制定下個(gè)月的銷售計(jì)劃,對(duì) 20 位銷售員本月的銷售量進(jìn)行了 統(tǒng)計(jì),繪制成如圖所示的統(tǒng)計(jì)圖,則這 20 位銷售人員本月銷售量的平均數(shù)、中位數(shù)、眾數(shù) 分別是(單位:輛)( )
A.18.4,16,16B.18.4,20,16
C.19, 16,16D.19, 20,16
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com