【題目】如圖,AB是⊙O直徑,C是半圓上一點,連接BC、AC,過點OODBC與過點A的切線交于點D,連接DC并延長交AB的延長線于點E.

(1)求證:DE是⊙O的切線;

(2)若AE=3,CE=,求線段CE、BE與劣弧BC所圍成的圖形面積(結(jié)果保留根號和π).

【答案】(1)見解析;(2)

【解析】

(1)如圖,連接OC.欲證DE是⊙O的切線,只需證得OCDE;

(2)設(shè)AD=CD=x,RtADE中,由AD2+AE2=DE2求得x的值,從而得出DE=2AD,據(jù)此知∠E=30°、BOC=60°,設(shè)圓的半徑為r,在RtOCE中由OC2+CE2=OE2可得r的值,根據(jù)S=SCOE-S扇形BOC求解可得.

(1)如圖,連接OC,

AD是過點A的切線,AB是⊙O的直徑,

ADAB,

∴∠DAB=90°.

ODBC,

∴∠1=2,3=4.

OC=OB,

∴∠2=4.

∴∠1=3.

CODAOD中,

∴△COD≌△AOD(SAS)

∴∠OCD=DAB=90°,即OCDE于點C.

OC是⊙O的半徑,

DE是⊙O的切線;

(2)設(shè)AD=x,

COD≌△AODCD=AD=x,

RtADE中,由AD2+AE2=DE2可得x2+32=(+x)2

解得:x=,

AD=、DE=2

sinE=,

∴∠E=30°,

∵∠ACE=90°,

∴∠COB=60°,

設(shè)圓的半徑為r,

RtOCE中,由OC2+CE2=OE2可得r2+(2=(3﹣r)2,

解得:r=1,

S=SCOE﹣S扇形BOC=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】符合下列條件之一的四邊形不一定是菱形的是(

A. 四條邊相等

B. 兩組鄰邊分別相等

C. 對角線相互垂直平分

D. 兩條對角線分別平分一組對角

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標為(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應(yīng)點C′的坐標為(  )

A. ,0) B. (2,0) C. ,0) D. (3,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某市有一塊長為(3a+b)米、寬為(2a+b)米的長方形地塊,中間是邊長為(a+b)米的正方形,規(guī)劃部門計劃將在中間的正方形修建一座雕像,四周的陰影部分進行綠化.

(1)綠化的面積是多少平方米?(用含字母a、b的式子表示)

(2)求出當a=10,b=12時的綠化面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:∠AOB=90°,OM是∠AOB的平分線,將三角板的直角頂點P在射線OM上滑動,兩直角邊分別與OA、OB交于C D. 求證:PC=PD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O上有一個動點A和一個定點B,令線段AB的中點是點P,過點B⊙O的切線BQ,且BQ=3,現(xiàn)測得的長度是,的度數(shù)是120°,若線段PQ的最大值是m,最小值是n,則mn的值是( 。

A. 3 B. 2 C. 9 D. 10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD是△ABC的高線,CE是△ABC的角平分線,它們相交于點P

1)若∠B40°,∠AEC75°,求證:ABBC;

2)若∠BAC90°,AP為△AECEC上中線,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,兩個含有30°角的完全相同的三角板ABCDEF沿直線l滑動,下列說法錯誤的是(  )

A. 四邊形ACDF是平行四邊形 B. 當點EBC中點時,四邊形ACDF是矩形

C. 當點B與點E重合時,四邊形ACDF是菱形 D. 四邊形ACDF不可能是正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系,O為坐標原點,點A(﹣2,0),點B0,2).

1)直接寫求∠BAO的度數(shù);

2)如圖1,將AOB繞點O順時針得AOB,當A恰好落在AB邊上時,設(shè)ABO的面積為S1BAO的面積為S2,S1S2有何關(guān)系?為什么?

3)若將AOB繞點O順時針旋轉(zhuǎn)到如圖2所示的位置,S1S2的關(guān)系發(fā)生變化了嗎?證明你的判斷.

查看答案和解析>>

同步練習冊答案