【題目】如圖,在△ABC中,AD是△ABC的高線,CE是△ABC的角平分線,它們相交于點(diǎn)P.
(1)若∠B=40°,∠AEC=75°,求證:AB=BC;
(2)若∠BAC=90°,AP為△AEC邊EC上中線,求∠B的度數(shù).
【答案】(1)證明見解析;(2)30°.
【解析】
由三角形的內(nèi)角和可求出∠ECB=35°,根據(jù)角平分線的定義可求∠ACB=70°,進(jìn)而可求出∠BAC=70°,從而結(jié)論可證;
(2)由AP是△AEC邊EC上的中線可知AP=PC,從而∠PAC=∠PCA,由CE是∠ACB的平分線,可證∠PAC=∠PCA=∠PCD,從而可求出∠PAC的度數(shù),然后求出∠BAD=60°,繼而可求出∠B的值.
(1)證明:∵∠B=40°,∠AEC=75°,
∴∠ECB=∠AEC﹣∠B=35°,
∵CE平分∠ACB,
∴∠ACB=2∠BCE=70°,
∠BAC=180°﹣∠B﹣∠ACB=180°﹣40°﹣70°=70°,
∴∠BAC=∠BCA,
∴AB=AC.
(2)∵∠BAC=90°,AP是△AEC邊EC上的中線,
∴AP=PC,
∴∠PAC=∠PCA,
∵CE是∠ACB的平分線,
∴∠PAC=∠PCA=∠PCD,
∵∠ADC=90°,
∴∠PAC=∠PCA=∠PCD=90°÷3=30°,
∴∠BAD=60°,
∵∠ADB=90°,
∴∠B=90°﹣60°=30°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,在等腰直角中,,,將邊繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,則的面積為_______.
(2)如圖,在直角 中,,,將邊繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,連接,求的面積,并說明理由.(用含的式子表示)
(3)如圖,在等腰中,,將邊繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,連接,若,則 的面積為 (用含的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿邊AB向終點(diǎn)B運(yùn)動(dòng).過點(diǎn)P作PQ⊥AB交折線ACB于點(diǎn)Q,D為PQ中點(diǎn),以DQ為邊向右側(cè)作正方形DEFQ.設(shè)正方形DEFQ與△ABC重疊部分圖形的面積是y(cm2),點(diǎn)P的運(yùn)動(dòng)時(shí)間為x(s).
(1)當(dāng)點(diǎn)Q在邊AC上時(shí),正方形DEFQ的邊長為 cm(用含x的代數(shù)式表示);
(2)當(dāng)點(diǎn)P不與點(diǎn)B重合時(shí),求點(diǎn)F落在邊BC上時(shí)x的值;
(3)當(dāng)0<x<2時(shí),求y關(guān)于x的函數(shù)解析式;
(4)直接寫出邊BC的中點(diǎn)落在正方形DEFQ內(nèi)部時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O直徑,C是半圓上一點(diǎn),連接BC、AC,過點(diǎn)O作OD∥BC與過點(diǎn)A的切線交于點(diǎn)D,連接DC并延長交AB的延長線于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若AE=3,CE=,求線段CE、BE與劣弧BC所圍成的圖形面積(結(jié)果保留根號(hào)和π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC 中,∠ACB=90°,AC=6,BC=8,點(diǎn)D是線段AB上的動(dòng)點(diǎn),M、N分別是AD、CD的中點(diǎn),連接MN,當(dāng)點(diǎn)D由點(diǎn)A向點(diǎn)B運(yùn)動(dòng)的過程中,線段MN所掃過的區(qū)域的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD、CE分別是∠ABC、∠BCD的平分線,則圖中的等腰三角形有( )
A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道:有些代數(shù)恒等式可以利用平面圖形的面積來表示,如:
就可以用如圖所示的面積關(guān)系來說明。
(1)請根據(jù)如圖寫出代數(shù)恒等式,并根據(jù)所寫恒等式計(jì)算:
(2)若求的值;
(3)現(xiàn)有如圖中的彩色卡片:A型、B型、C型,把這些卡片不重疊不留縫隙地貼在棱長為的100個(gè)立方體表面進(jìn)行裝飾,A型、B型、C型卡片的單價(jià)分別為0.7元/張、0.5元/張、0.4元/張,共需多少費(fèi)用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AP是⊙O的切線,點(diǎn)A為切點(diǎn),BP與⊙O交于點(diǎn)C,點(diǎn)D是AP的中點(diǎn),連結(jié)CD.
(1)求證:CD是⊙O的切線;
(2)若AB=2,∠P=30°,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人用如圖所示的兩個(gè)分格均勻的轉(zhuǎn)盤做游戲:分別轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,若轉(zhuǎn)盤停止后,指針指向一個(gè)數(shù)字(若指針恰好停在分格線上,則重轉(zhuǎn)一次),用所指的兩個(gè)數(shù)字作乘積,如果積大于10,那么甲獲勝;如果積不大于10,那么乙獲勝.清你解決下列問題:
(l)利用樹狀圖(或列表)的方法表示游戲所有可能出現(xiàn)的結(jié)果;
(2)求甲、乙兩人獲勝的概率,并說明游戲是否公平.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com