【題目】如圖,AB,CD都垂直于x軸,垂足分別為B,D,若A(6,3),C(2,1), 則△OCD與四邊形ABDC的面積比為( )
A.1:2
B.1:3
C.1:4
D.1:8
【答案】D
【解析】解:設(shè)OA所在直線為y=kx, 將點(diǎn)A(6,3)代入得:3=6k,
解得:k= ,
∴OA所在直線解析式為y= x,
當(dāng)x=2時,y= ×2=1,
∴點(diǎn)C在線段OA上,
∵AB,CD都垂直于x軸,且CD=1、AB=3,
∴△OCD∽△OAB,
∴ =( )2= ,
則△OCD與四邊形ABDC的面積比為1:8,
故選:D.
【考點(diǎn)精析】利用相似三角形的判定與性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在線段AB的同側(cè)作射線AM和BN,若∠MAB與∠NBA的平分線分別交射線BN,AM于點(diǎn)E,F(xiàn),AE和BF交于點(diǎn)P.如圖,點(diǎn)點(diǎn)同學(xué)發(fā)現(xiàn)當(dāng)射線AM,BN交于點(diǎn)C;且∠ACB=60°時,有以下兩個結(jié)論:
①∠APB=120°;②AF+BE=AB.
那么,當(dāng)AM∥BN時:
(1)點(diǎn)點(diǎn)發(fā)現(xiàn)的結(jié)論還成立嗎?若成立,請給予證明;若不成立,請求出∠APB的度數(shù),寫出AF,BE,AB長度之間的等量關(guān)系,并給予證明;
(2)設(shè)點(diǎn)Q為線段AE上一點(diǎn),QB=5,若AF+BE=16,四邊形ABEF的面積為32 ,求AQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E,F是對角線AC上的兩點(diǎn),且AE=CF.下列結(jié)論:①BE=DF;②BE∥DF;③AB=DE;④四邊形EBFD為平行四邊形;⑤S△ADE=S△ABE;⑥AF=CE.其中正確的個數(shù)是( )
A. 3個 B. 4個 C. 5個 D. 6個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4月的某天小欣在“A超市”買了“雀巢巧克力”和“趣多多小餅干”共10包,已知“雀巢巧克力”每包22元,“趣多多小餅干”每包2元,總共花費(fèi)了80元.
(1)請求出小欣在這次采購中,“雀巢巧克力”和“趣多多小餅干”各買了多少包?
(2)“五一”期間,小欣發(fā)現(xiàn),A、B兩超市以同樣的價格出售同樣的商品,并且又各自推出不同的優(yōu)惠方案:在A超市累計(jì)購物超過50元后,超過50元的部分打九折;在B超市累計(jì)購物超過100元后,超過100元的部分打八折.
①請問“五一”期間,若小欣購物金額超過100元,去哪家超市購物更劃算?
②“五一”期間,小欣又到“B超市”購買了一些“雀巢巧克力”,請問她至少購買多少包時,平均每包價格不超過20元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC的面積為9,點(diǎn)O為左邊原點(diǎn),點(diǎn)A在軸上,點(diǎn)C在軸上,點(diǎn)B在函數(shù)的圖象上,點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過點(diǎn)P分別作軸、軸的垂線,垂足分別為E、F,并設(shè)矩形OEPF和正方形OABC不重合的部分(圖中陰影部分)的面積為S.
(1)求B點(diǎn)坐標(biāo)和值;
(2)當(dāng)時,求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個圓柱體的側(cè)面展開圖為長方形ABCD,若AB=6.28cm,BC=18.84cm,則該圓柱體的體積是多少?(π取3.14,結(jié)果精確到十分位).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑的⊙O經(jīng)過點(diǎn)P,C是⊙O上一點(diǎn),連接PC交AB于點(diǎn)E,且∠ACP=60°,PA=PD.
(1)試判斷PD與⊙O的位置關(guān)系,并說明理由;
(2)若 : =1:2,求AE:EB:BD的值(請你直接寫出結(jié)果);
(3)若點(diǎn)C是弧AB的中點(diǎn),已知AB=4,求CECP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列圖形,尋找對頂角(不含平角).
(1)如圖①,圖中共有____對對頂角;
(2)如圖②,圖中共有____對對頂角;
(3)如圖③,圖中共有____對對頂角;
(4)研究(1)~(3)小題中直線條數(shù)與對頂角對數(shù)的關(guān)系,猜想:若有n條直線相交于一點(diǎn),則共可形成__________對對頂角;
(5)若有180條直線相交于一點(diǎn),則可形成________對對頂角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com