【題目】如圖,平行四邊形ABCD中,點E是BC邊上的中點,過A作AF⊥CD,AE⊥EF.
(1)若∠B=60°,AE平分∠BAF,DF=4.求AE的長.
(2)求證:AB+CF=EF
【答案】(1)2;(2)詳見解析;
【解析】
(1)首先根據(jù)含30°直角三角形的性質求出AF,然后證明∠EAF=45°,利用三角函數(shù)求AE即可;
(2)取AF中點G,連接EG,根據(jù)中位線的性質可得EG∥CD,AB+CF=2EG,然后根據(jù)直角三角形的性質可得EG=GF,證明△GEF是等腰直角三角形即可.
解:(1)∵在平行四邊形ABCD中,∠B=60°,DF=4,
∴∠D=60°,∠BAD=120°,
∵AF⊥CD,
∴∠DAF=30°,AF=DF=,
∴∠BAF=90°,
∴∠EAF=45°,
∵AE⊥EF,
∴AE=AF·cos45°=;
(2)取AF中點G,連接EG,
∵點E是BC邊上的中點,
∴EG∥CD,EG=(AB+CF),即AB+CF=2EG,
∵△AEF是直角三角形,
∴EG=GF,
∵AF⊥CD,
∴EG⊥AF,
∴ △GEF是等腰直角三角形,
∴EF=EG,
∴AB+CF=EF.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動.
(1)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2?
(2)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ中PQ的長度等于5cm?
(3)在(1)中,當P,Q出發(fā)幾秒時,△PBQ有最大面積?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,將沿弦BC所在直線折疊,折疊后的弧與直徑AB相交于點D,連接CD.
(1)若點D恰好與點O重合,則∠ABC= °;
(2)延長CD交⊙O于點M,連接BM.猜想∠ABC與∠ABM的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC和△DEF是兩個等腰直角三角形,∠A=∠D=90°,△DEF的頂點E位于邊BC的中點上.
(1)如圖1,設DE與AB交于點M,EF與AC交于點N,求證:△BEM∽△CNE;
(2)如圖2,將△DEF繞點E旋轉,使得DE與BA的延長線交于點M,EF與AC交于點N,于是,除(1)中的一對相似三角形外,能否再找出一對相似三角形并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】蜂蜜具有消食、潤肺、安神、美顏之功效,是天然的健康保健佳品.秋天即將來臨時,雪寶山土特產公司抓住商機購進甲、乙、丙三種蜂蜜,已知銷售每瓶甲蜂蜜的利潤率為10%,每瓶乙蜂蜜的利潤率為20%,每瓶丙蜂蜜的利潤率為30%.當售出的甲、乙、丙蜂蜜瓶數(shù)之比為1:3:1時,商人得到的總利潤率為22%;當售出的甲、乙、丙蜂蜜瓶數(shù)之比為3:2:1時,商人得到的總利潤率為20%.那么當售出的甲、乙、丙蜂蜜瓶數(shù)之比為5:6:1時,該公司得到的總利潤率為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,防洪大堤的橫截面ABGH是梯形,背水坡AB的坡度i=1:(垂直高度AE與水平寬度BE的比),AB=20米,BC=30米,身高為1.7米的小明(AM=1.7米)站在大堤A點(M,A,E三點在同一條直線上),測得電線桿頂端D的仰角∠=20°.
(1)求∠ABC;
(2)求電線桿CD的高度.(結果精確到個位,參考數(shù)據(jù)sin20°≈0.3,cos20°≈0.9,tan20°≈0.4,≈1.7)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四張質地相同的卡片如圖所示.將卡片洗勻后,背面朝上放置在桌面上.
(1)求隨機抽取一張卡片,恰好得到數(shù)字2的概率;
(2)小貝和小晶想用以上四張卡片做游戲,游戲規(guī)則見信息圖.你認為這個游戲公平嗎?請用列表法或畫樹形圖法說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D=60°.
(1)求證:AE是⊙O的切線;
(2) 連接OC,當BC=3時,求劣弧AC的長和扇形B0C的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com