【題目】隨著通訊技術的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數學興趣小組設計了“你最喜歡的溝通方式”調查問卷(每人必選且只選一種),在全校范圍內隨機調查了部分學生,將統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:
(1)這次統(tǒng)計共抽查了________名學生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數為___________;
(2)請將條形統(tǒng)計圖補充完整;
(3)某天甲、乙兩名同學都想從“微信”、“QQ”、“電話”三種溝通方式中選一種方式與對方聯系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學恰好選擇同一種溝通方式的概率.
【答案】(1)100,108°;(2)短信:5 ,微信:40;(3).
【解析】試題分析:(1)根據喜歡電話溝通的人數與百分比即可求出共抽查人數,求出使用QQ的百分比即可求出QQ的扇形圓心角度數.
(2)計算出短信與微信的人數即可補全統(tǒng)計圖.
(3)列出樹狀圖分別求出所有情況以及甲、乙兩名同學恰好選中同一種溝通方式的情況后,利用概念公式即可求出甲、乙兩名同學恰好選中同一種溝通方式的概率.
試題解析:
解:(1)喜歡用電話溝通的人數為20,所占百分比為20%,
∴此次共抽查了:20÷20%=100人.
喜歡用QQ溝通所占比例為:30÷100=30%,
∴“QQ”的扇形圓心角的度數為:360°×30%=108°.
故答案為:100,108°;
(2)喜歡用短信的人數為:100×5%=5人,
喜歡用微信的人數為:100-20-5-30-5=40人,
補充圖形,如圖所示:
(3)列出樹狀圖,如圖所示:
所有情況共有9種情況,其中兩人恰好選中同一種溝通方式共有3種情況,
甲、乙兩名同學恰好選中同一種溝通方式的概率為:= .
科目:初中數學 來源: 題型:
【題目】已知:如圖, AF平分∠BAC,BC⊥AF, 垂足為E,點D與點A關于點E對稱,PB分別與線段CF,AF相交于P,M.
(1)求證:AB=CD;
(2)若∠BAC=2∠MPC,請你判斷∠F與∠MCD的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知長方形,點,.
(1)如圖,有一動點在第二象限的角平分線上,若,求的度數;
(2)若把長方形向上平移,得到長方形.
①在運動過程中,求的面積與的面積之間的數量關系;
②若,求的面積與的面積之比.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2019年是中國建國70周年,作為新時期的青少年,我們應該肩負起實現粗國偉大復興的責任,為了培養(yǎng)學生的愛國主義情懷,我校學生和老師在5月下旬集體乘車去抗日戰(zhàn)爭紀念館研學,已知學生的人數是老師人數的12倍多20人,學生和老師總人數有540人.
(1)請求出去抗日戰(zhàn)爭紀念館研學的學生和老師的人數各是多少?
(2)如果學校準備租賃A型車和B型車共14輛(其中B型車最多7輛),已知A型車每車最多可以載35人,日租金為2000元,B型車每車最多可以載45人,日租金為3000元,請求出最經濟的租車方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市防洪大堤的橫截面如圖所示,已知AE∥BC,背水坡AB的坡度,且AB=26米.身高1.8米的小明豎直站立于A點,眼睛在M點處測得豎立的高壓電線桿頂端D點的仰角為24°,已知地面CB寬30米,則高壓電線桿CD的高度約為( 。ńY果精確到整數,參考數據:sin24°≈0.40,cos24°≈0.91,tan24°≈0.45)
A. 33米 B. 34米 C. 35米 D. 36米
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】根據數軸和絕對值的知識回答下列問題
(1)一般地,數軸上表示數m和數n兩點之間的距離我們可用│m-n│表示。
例如,數軸上4和1兩點之間的距離是________.數軸上-3和2兩點之間的距離是________.
(2) 數軸上表示數a的點位于-4與2之間,則│a+4│+│a-2│的值為_____________.
(3) 當a為何值時,│a+5│+│a-1│+│a-4│有最小值?最小值為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與x軸交于B(-3,0)、C(1,0)兩點,與y軸交于點A(0,2),拋物線的頂點為D.連接AB,點E是第二象限內的拋物線上的一動點,過點E作EP⊥BC于點P,交線段AB于點F.
(1)求此拋物線的解析式;
(2)過點E作EG⊥AB于點G,Q為線段AC的中點,當△EGF周長最大時,在 軸上找一點R,使得|RE-RQ|值最大,請求出R點的坐標及|RE-RQ|的最大值;
(3)在(2)的條件下,將△PED繞E點旋轉得△ED′P′,當△AP′P是以AP為直角邊的直角三角形時,求點P′的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在數學學習中,及時對知識進行歸納和整理是完善知識結構的重要方法.善于學習的小明在學習了一次方程(組)、一元一次不等式和一次函數后,把相關知識歸納整理如下:
(1)請你根據以上方框中的內容在下面數字序號后寫出相應的結論:
① ;② ;③ ;④ .
(2)如果點C的坐標為(1,3) ,求不等式的解集.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠ACB=90°,O是斜邊AB的中點,點D,E分別在直角邊AC,BC上,且∠DOE=90°,DE交OC于點P.則下列結論:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)△ABC的面積等于四邊形CDOE面積的2倍;(4)OD=OE.其中正確的結論有( )
A. B. C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com