【題目】某市防洪大堤的橫截面如圖所示,已知AEBC背水坡AB的坡度AB=26米.身高1.8米的小明豎直站立于A眼睛在M點處測得豎立的高壓電線桿頂端D點的仰角為24°已知地面CB30則高壓電線桿CD的高度約為(  。ńY(jié)果精確到整數(shù)參考數(shù)據(jù)sin24°≈0.40,cos24°≈0.91tan24°≈0.45

A. 33 B. 34 C. 35 D. 36

【答案】D

【解析】試題分析:過A點作AF垂直于CB的延長線于點F

i=1:2.4,AB=26米,

AFBF=1:2.4,

設(shè)AFx米,則BF=2.4x米,

由勾股定理得:x2+(2.4x)2=262,

解得:x=10,

AF=10米,BF=24米,

CNFMAFAM=10+1.8=11.8,

MNCFCBBF=30+24=54米,

∵∠NMD=24°,

DNMNtan24°=54×0.45=24.3米,

CDCNDN=11.8+24.3=36.1≈36米.

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,已知ABCD,求證:EGF=AEG+CFG

(2)如圖2,已知ABCD,AEF與∠CFE的平分線交于點G.猜想∠G的度數(shù)。證明你的猜想

(3)如圖3,已知ABCD,EG平分∠AEH,EH平分∠GEF,FH平分∠CFG,FG平分∠HFE,G=95°,求∠H的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有RtABC,A90°,ABAC,A(-2,0)、B0, d)、C(-3,2.

1)求d的值;

2)將ABC沿軸的正方向平移a個單位,在第一象限內(nèi)BC兩點的對應(yīng)點B、C正好落在某反比例函數(shù)圖像上.請求出這個反比例函數(shù)和此時直線BC的解析式;

3)在(2)的條件下,直線y軸于點G,作軸于 是線段上的一點,若面積相等,求點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BADBCE均為等腰直角三角形,∠BAD=BCE=90°,點MDE的中點,過點EAD平行的直線交射線AM于點N

1)當(dāng)A,BC三點在同一直線上時(如圖1),直接寫出線段ADNE的數(shù)量關(guān)系為   

2)將圖1中的BCE繞點B旋轉(zhuǎn),當(dāng)A,B,E三點在同一直線上時(如圖2),判斷ACN是什么特殊三角形并說明理由.

3)將圖1BCE繞點B旋轉(zhuǎn)到圖3位置,此時A,BM三點在同一直線上.若AC=3,AD=1,則四邊形ACEN的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c(其中b,c為常數(shù))的圖象經(jīng)過點A31),點C0,4),頂點為點M,過點AABx軸,交y軸于點D,交該二次函數(shù)圖象于點B,連結(jié)BC

1)求該二次函數(shù)的解析式及點M的坐標(biāo).

2)若將該二次函數(shù)圖象向下平移mm0)個單位,使平移后得到的二次函數(shù)圖象的頂點落在ABC的內(nèi)部(不包括ABC的邊界),求m的取值范圍.

3)沿直線AC方向平移該二次函數(shù)圖象,使得CM與平移前的CB相等,求平移后點M的坐標(biāo).

4)點P是直線AC上的動點,過點P作直線AC的垂線PQ,記點M關(guān)于直線PQ的對稱點為M′.當(dāng)以點PA、MM′為頂點的四邊形為平行四邊形時,直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計了你最喜歡的溝通方式調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖請結(jié)合圖中所給的信息解答下列問題

1)這次統(tǒng)計共抽查了________名學(xué)生;在扇形統(tǒng)計圖中,表示QQ的扇形圓心角的度數(shù)為___________;

2)請將條形統(tǒng)計圖補充完整;

3)某天甲、乙兩名同學(xué)都想從微信、QQ、電話三種溝通方式中選一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選擇同一種溝通方式的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個正方形內(nèi)兩個相鄰正方形的面積分別為 4 2,它們都有兩個頂點在大正方形的邊 上且組成的圖形為軸對稱圖形,則圖中陰影部分的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的頂點A、BC在邊長為1的網(wǎng)格格點上.

1)畫△ABC繞點O逆時針旋轉(zhuǎn)90°得到的△A1B1C1;

2)畫△A1B1C1關(guān)于點O的中心對稱圖形△A2B2C2

3)平行四邊形A1B1A2B2的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列短文:

如圖,G是四邊形ABCD對角線AC上一點,過GGECDADE,GFCBABF,若EG=FG,則有BC=CD成立,同時可知四邊形ABCD與四邊形AFGE相似.

解答問題:

(1)有一塊三角形空地(如圖△ABC),BC鄰近公路,現(xiàn)需在此空地上修建一個正方形廣場,其余地為草坪,要使廣場一邊靠公路,且其面積最大,如何設(shè)計,請你在下面圖中畫出此廣場正方形.(尺規(guī)作圖,不寫作法)

(2)銳角△ABC是一塊三角形余料,邊AB=130mm,BC=150mm,AC=140mm,要把它加工成正方形零件,使正方形的一邊在三角形的一邊上,其余兩個頂點分別在另外兩條邊上,且剪去正方形零件后剩下的邊角料較少,這個正方形零件的邊長是多少?你能得出什么結(jié)論,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案