如圖所示,居民樓A與馬路a相距60m,在距離汽車100m處就可受到噪音影響,試求在路上以9km/h速度行駛的汽車,給A樓的居民帶來(lái)多長(zhǎng)時(shí)間的噪音.
考點(diǎn):勾股定理的應(yīng)用
專題:
分析:設(shè)汽車行駛到點(diǎn)P′處噪音影響結(jié)束,則AP′=AP.由勾股定理得到QP的長(zhǎng),然后求得PP′長(zhǎng),利用速度路程時(shí)間之間的關(guān)系求得時(shí)間即可.
解答:解:如圖,設(shè)汽車行駛到點(diǎn)P′處噪音影響結(jié)束,連接AP′,則AP′=AP.
∵由勾股定理得到:PQ=P′Q=
AP2-AQ2
=80,
∴PP′=PQ+P′Q=2×80=160米,
9km/h=2.5m/s,
∴影響時(shí)間為160÷2.5=64秒.
答:給A樓的居民帶來(lái)64秒長(zhǎng)時(shí)間的噪音.
點(diǎn)評(píng):本題考查了勾股定理的應(yīng)用,解題的關(guān)鍵是從實(shí)際問(wèn)題中整理出直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

單項(xiàng)式-2πa2bc的系數(shù)是
 
,次數(shù)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知線段AB=8cm,BC=3cm.
(1)線段AC的長(zhǎng)度能否確定?(直接回答“能”或“不能”即可);
(2)是否存在使A、C之間的距離最短的情形?若存在,請(qǐng)求出此時(shí)AC的長(zhǎng)度;若不存在,說(shuō)明理由.
(3)能比較BA+BC與AC的大小嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列圖形既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是(  )
A、等邊三角形B、平行四邊形
C、正五邊形D、正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

邊心距為4
3
的正六邊形的半徑為
 
,中心角等于
 
 度,面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,在△ABC,∠ACB=90°,CD⊥AB于D,角A的平分線交CD于F,交BC于F,過(guò)點(diǎn)E作EH⊥AB于H.
(1)求證:CE=CF=EH;
(2)若H為AB中點(diǎn),∠B是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,□ABCO的頂點(diǎn)A、C的坐標(biāo)分別為A (2,0)、C (-1,2),反比例函數(shù)y=
k
x
(k≠0)的圖象經(jīng)過(guò)點(diǎn)B.
(1)求k的值.
(2)將?ABCO沿x軸翻折,點(diǎn)C落在點(diǎn)C′處.判斷點(diǎn)C′是否落在反比例函數(shù)y=
k
x
(k≠0)的圖象上,請(qǐng)通過(guò)計(jì)算說(shuō)明理由.
(3)在y軸上找出一點(diǎn)M,當(dāng)線段AM與線段CM之差達(dá)到最大時(shí),求符合條件的點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P,Q 在邊長(zhǎng)為100厘米的正方形邊上運(yùn)動(dòng),按A→B→C→D→A…方向,點(diǎn)P從A以70cm/min速度,點(diǎn)Q從B以50cm/min的速度運(yùn)動(dòng),如圖所示,當(dāng)點(diǎn)P第2015次追上點(diǎn)Q時(shí),是在正方形的
 
上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知A=a+a2+a3+a4+…+a2013,若a=1,則A=
 
,若a=-1,則A=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案