【題目】如圖,兩個完全相同的直角三角板放置在平面直角坐標(biāo)系中,點(diǎn)A,B分別在x軸、y軸上,點(diǎn)C在邊AB上,延長DC交y軸于點(diǎn)E.若點(diǎn)D的橫坐標(biāo)為5,∠OBA=30°,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A,D,E,則a的值為_____.
【答案】
【解析】
設(shè)A(m,0),根據(jù)含有30°角的直角三角板的特點(diǎn),能夠得到EC是△ABO的中位線,進(jìn)而分別求出A,D,E三點(diǎn)的坐標(biāo),再將三點(diǎn)代入函數(shù)解析式,利用待定系數(shù)法求得a的值.
解:設(shè)A(m,0),
在Rt△ABO中,∠OBA=30°,
∴OB=m,AB=2m,
又∵△ACD是與△ABO相同的三角板,
∴∠ADC=30°,AC=m,CD=2m,
∴C是AB的中點(diǎn),
又∵∠BEC=90°,
∴EC=m,
∴ED=m,
又∵ED=5,
∴m=2,
∴A(2,0),E(0,),D(5,),
∴ ,
∴a=,
故答案為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李寧準(zhǔn)備完成題目;解二元一次方程組,發(fā)現(xiàn)系數(shù)“□”印刷不清楚.
(1)他把“□”猜成3,請你解二元一次方程組;
(2)張老師說:“你猜錯了”,我看到該題標(biāo)準(zhǔn)答案的結(jié)果x、y是一對相反數(shù),通過計算說明原題中“□”是幾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:點(diǎn)Q到圖形W上每一個點(diǎn)的距離的最小值稱為點(diǎn)Q到圖形W的距離.
例如,如圖1,正方形ABCD滿足A(1,0),B(2,0),C(2,1),D(1,1),那么點(diǎn)O(0,0)到正方形ABCD的距離為1.
(1)如果⊙P是以(3,4)為圓心,2為半徑的圓,那么點(diǎn)O(0,0)到⊙P的距離為 ;
(2)①求點(diǎn)M(3,0)到直線了y=x+4的距離:
②如果點(diǎn)N(0,a)到直線y=x+4的距離為2,求a的值;
(3)如果點(diǎn)G(0,b)到拋物線y=x2的距離為3,請直接寫出b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同樣條件下對某種小麥種子進(jìn)行發(fā)芽試驗(yàn),統(tǒng)計發(fā)芽種子數(shù),獲得如下頻數(shù)表.
試驗(yàn)種子n(粒) | 1 | 5 | 50 | 100 | 200 | 500 | 1000 | 2000 | 3000 |
發(fā)芽頻數(shù)m | 1 | 4 | 45 | 92 | 188 | 476 | 951 | 1900 | 2850 |
發(fā)芽頻率 | 0 | 0.80 | 0.90 | 0.92 | 0.94 | 0.952 | 0.951 | a | b |
(1)計算表中a,b的值;
(2)估計該麥種的發(fā)芽概率;
(3)如果該麥種發(fā)芽后,只有87%的麥芽可以成活,現(xiàn)有100kg麥種,則有多少千克的麥種可以成活為秧苗?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某花店用3600元按批發(fā)價購買了一批花卉.若將批發(fā)價降低10%,則可以多購買該花卉20盆.市場調(diào)查反映,該花卉每盆售價25元時,每天可賣出25盆.若調(diào)整價格,每盆花卉每漲價1元,每天要少賣出1盆.
(1)該花卉每盆批發(fā)價是多少元?
(2)若每天所得的銷售利潤為200元時,且銷量盡可能大,該花卉每盆售價是多少元?
(3)為了讓利給顧客,該花店決定每盆花卉漲價不超過5元,問該花卉一天最大的銷售利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,動點(diǎn)P在線段BC上,點(diǎn)Q在線段AB上,且PQ=BQ,延長QP交射線AC于點(diǎn)D.
(1)求證:QA=QD;
(2)設(shè)∠BAP=α,當(dāng)2tanα是正整數(shù)時,求PC的長;
(3)作點(diǎn)Q關(guān)于AC的對稱點(diǎn)Q′,連結(jié)QQ′,AQ′,DQ′,延長BC交線段DQ′于點(diǎn)E,連結(jié)AE,QQ′分別與AP,AE交于點(diǎn)M,N(如圖2所示).若存在常數(shù)k,滿足kMN=PEQQ′,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校計劃購買排球、籃球,已知購買1個排球與1個籃球的總費(fèi)用為180元;3個排球與2個籃球的總費(fèi)用為420元.
(1)求購買1個排球、1個籃球的費(fèi)用分別是多少元?
(2)若該學(xué)校計劃購買此類排球和籃球共60個,并且籃球的數(shù)量不超過排球數(shù)量的2倍.求至少需要購買多少個排球?并求出購買排球、籃球總費(fèi)用的最大值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將如圖所示的牌面數(shù)字分別是1,2,3,4 的四張撲克牌背面朝上,洗勻后放在桌面上.
(1)從中隨機(jī)抽出一張牌,牌面數(shù)字是偶數(shù)的概率是_____;
(2)先從中隨機(jī)抽出一張牌,將牌面數(shù)字作為十位上的數(shù)字,然后將該牌放回并重新洗勻,再隨機(jī)抽取一張,將牌面數(shù)字作為個位上的數(shù)字,請用畫樹狀圖或列表的方法求組成的兩位數(shù)恰好是 4 的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別交于A,B兩點(diǎn),拋物線y=﹣x2+bx+c經(jīng)過A,B兩點(diǎn),點(diǎn)P在線段OA上,從點(diǎn)A以1個單位/秒的速度勻速運(yùn)動;同時,點(diǎn)Q在線段AB上,從點(diǎn)A出發(fā),向點(diǎn)B以個單位/秒的速度勻速運(yùn)動,連接PQ,設(shè)運(yùn)動時間為t秒.
(1)求拋物線的解析式;
(2)當(dāng)t為何值時,△APQ為直角三角形;
(3)過點(diǎn)P作PE∥y軸,交AB于點(diǎn)E,過點(diǎn)Q作QF∥y軸,交拋物線于點(diǎn)F,連接EF,當(dāng)EF∥PQ時,求點(diǎn)F的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com