如圖,直線PA,PB是⊙O的兩條切線,A,B分別為切點(diǎn),∠APB=120°,OP=10厘米,則弦AB的長為
5
3
cm
5
3
cm
分析:先由題意得出△AOB為等邊三角形,再根據(jù)勾股定理即可得出.
解答:解:連OA,OB,
∵直線PA,PB是⊙O的兩條切線,
∴OA⊥PA,OB⊥PB,
∵∠APB=120°,
∴∠AOB=60°,
∵OA=OB,
則△AOB為等邊三角形,
由直角三角形中30°角所對的直角邊等于斜邊的一半可得:
PA=5cm,
再由勾股定理OA=
OP2-PA2
=5
3
cm,
從而得AB=5
3
(cm).
故答案為:5
3
cm.
點(diǎn)評:本題考查了圓的切線性質(zhì),及解直角三角形的知識.運(yùn)用切線的性質(zhì)來進(jìn)行計(jì)算或論證,常通過作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖,直線PA、PB、MN分別與⊙O相切于點(diǎn)A、B、D,若PA=PB=8cm,則△PMN的周長是
16cm
.如圖,PA,PB分別切⊙O于A、B兩點(diǎn),C是⊙O上一點(diǎn),∠P=50°,則∠ACB的度數(shù)是
65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線PA、PB、MN分別與⊙O相切于點(diǎn)A、B、D,PA=PB=8cm,△PMN的周長是
16cm
16cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,直線PA、PB、MN分別與⊙O相切于點(diǎn)A、B、D,若PA=PB=8cm,則△PMN的周長是________.如圖,PA,PB分別切⊙O于A、B兩點(diǎn),C是⊙O上一點(diǎn),∠P=50°,則∠ACB的度數(shù)是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006-2007學(xué)年湖北省黃岡市浠水縣巴驛中學(xué)九年級(上)期末數(shù)學(xué)復(fù)習(xí)卷(2)(解析版) 題型:填空題

如圖,直線PA、PB、MN分別與⊙O相切于點(diǎn)A、B、D,若PA=PB=8cm,則△PMN的周長是    .如圖,PA,PB分別切⊙O于A、B兩點(diǎn),C是⊙O上一點(diǎn),∠P=50°,則∠ACB的度數(shù)是   

查看答案和解析>>

同步練習(xí)冊答案