【題目】已知拋物線經(jīng)過點.
(1)求此拋物線的函數(shù)解析式;
(2)判斷點是否在此拋物線上;
(3)求出拋物線上縱坐標為的點的坐標.
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=﹣x+c交x軸于A、B兩點(B在A左側(cè)),交y軸于C,AB=10.
(1)求拋物線的解析式;
(2)在A點右側(cè)的x軸上取點D,E為拋物線上第二象限內(nèi)的點,連接DE交拋物線另外一點F,tan∠BDE=,DF=2EF,求E點坐標;
(3)在(2)的條件下,點G在x軸負半軸上,連接EG,EH∥AB交拋物線另外一點H,點K在第四象限的拋物線上,設DE交y軸于R,∠EHK=∠EGD+∠ORD,當HK=EG,求K點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系內(nèi),的三個頂點的分別為,,(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).
(1)在網(wǎng)格內(nèi)畫出向下平移2個單位長度得到的,點的坐標是________;
(2)以點為位似中心,在網(wǎng)格內(nèi)畫出,使與位似,且位似比為,點的坐標是________;
(3)的面積是________平方單位.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在矩形 ABCD 中 AB=8,BC=6,AE=BE,點 F 為邊 BC 上任意一點,將BEF 沿著 EF 翻折,點 B 為點 B 的對應點,則當BCD 的面積最小時BCF 的面積為( )
A.4B.6C.4.2D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=﹣x2+x﹣1與x軸交于點A,B(點A在點B的左側(cè)),與y軸交于點C,其頂點為D.將拋物線位于直線l:y=t(t<)上方的部分沿直線l向下翻折,拋物線剩余部分與翻折后所得圖形組成一個“M”形的新圖象.
(1)點A,B,D的坐標分別為 , , ;
(2)如圖①,拋物線翻折后,點D落在點E處.當點E在△ABC內(nèi)(含邊界)時,求t的取值范圍;
(3)如圖②,當t=0時,若Q是“M”形新圖象上一動點,是否存在以CQ為直徑的圓與x軸相切于點P?若存在,求出點P的坐標;若不存在,請說明理由.
[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/28/2213337932849152/2214008649842688/STEM/890e59b444e5404588b8511540e03e41.png]
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為直徑,OD∥BC交⊙D于點D,交AC于點E,連接AD,BD,CD若AB=10,cos∠ABC=,則tan∠DBC的值是( )
A.B.C.2D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,點A為⊙0外一點,過A作⊙O的切線與⊙O相切于點P,連接PO并延長至圓上一點B連接AB交⊙O于點C,連接OA交⊙O于點D連接DP且∠OAP=∠DPA。
(1)求證:PO=PD
(2)若AC=,求⊙O的半徑。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD=CD,以AB為直徑的⊙O經(jīng)過點C,連接AC,OD交于點E.
(1)證明:OD∥BC;
(2)若AD是⊙O的切線,連接BD交于⊙O于點F,連接EF,且OA=1,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個盒子中有1個白球和2個紅球,這些球除顏色外都相同.
⑴如果從盒子中隨機摸出1個球,摸出紅色球的概率為_____________;
⑵若從盒子中隨機摸出一個球,記下顏色后放回,再從中隨機摸出一個球,請通過列表或畫樹狀圖的方法,求兩次摸到不同顏色球的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com