【題目】如圖,在Rt△ABC中,AB=BC,∠ABC=90°,點(diǎn)D是AB的中點(diǎn),連接CD,過點(diǎn)B作BG⊥CD,分別交CD,CA于點(diǎn)E,F(xiàn),與過點(diǎn)A且垂直于AB的直線相交于點(diǎn)G,連接DF,給出以下五個結(jié)論: ① ;②∠ADF=∠CDB;③點(diǎn)F是GE的中點(diǎn);④AF= AB;⑤SABC=5SBDF ,
其中正確結(jié)論的序號是

【答案】①②④
【解析】解:依題意可得BC∥AG, ∴△AFG∽△BFC,∴
又AB=BC,∴
故結(jié)論①正確;
如右圖,∵∠1+∠3=90°,∠1+∠4=90°,∴∠3=∠4.
在△ABG與△BCD中,
,
∴△ABG≌△BCD(ASA),
∴AG=BD,又BD=AD,∴AG=AD;
在△AFG與△AFD中,

∴△AFG≌△AFD(SAS),∴∠5=∠2,
又∠5+∠3=∠1+∠3=90°,∴∠5=∠1,
∴∠1=∠2,即∠ADF=∠CDB.
故結(jié)論②正確;
∵△AFG≌△AFD,∴FG=FD,又△FDE為直角三角形,∴FD>FE,
∴FG>FE,即點(diǎn)F不是線段GE的中點(diǎn).
故結(jié)論③錯誤;
∵△ABC為等腰直角三角形,∴AC= AB;
∵△AFG≌△AFD,∴AG=AD= AB= BC;
∵△AFG∽△BFC,∴ ,∴FC=2AF,
∴AF= AC= AB.
故結(jié)論④正確;
∵AF= AC,∴SABF= SABC;又D為中點(diǎn),∴SBDF= SABF
∴SBDF= SABC , 即SABC=6SBDF
故結(jié)論⑤錯誤.
綜上所述,結(jié)論①②④正確,
所以答案是:①②④.

【考點(diǎn)精析】根據(jù)題目的已知條件,利用等腰直角三角形和相似三角形的判定與性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電腦公司銷售部為了定制下個月的銷售計劃,對20位銷售人員本月的銷售量(單位:臺)進(jìn)行了統(tǒng)計,繪制成如圖所示的統(tǒng)計圖,則這20位銷售人員本月銷售量的中位數(shù)、眾數(shù)分別是( 。

A. 20,14 B. 19,20 C. 20,20 D. 25,20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某社會團(tuán)體組織人員參觀皇窯瓷展,主辦方對團(tuán)體購票實(shí)行優(yōu)惠:在原定票價的基礎(chǔ)上,每張降價40元,則按原定票價需花費(fèi)6000元購買門票,現(xiàn)在只花了4000元.
(1)求每張門票原定的票價;
(2)在展覽期間,平均每天可售出個人票2000張,現(xiàn)主辦方?jīng)Q定對個人購票也采取優(yōu)惠措施,發(fā)現(xiàn)原定票價每降低2元,平均每天可多售出個人票40張,若要使平均每天的個人票收入達(dá)到241500元,且能有效控制游覽人數(shù),則票價應(yīng)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)A,B,C在一次函數(shù)y=-2x+m的圖象上,它們的橫坐標(biāo)依次為-1,1,2,分別過這些點(diǎn)作x軸與y軸的垂線,則圖中陰影部分的面積之和是(  )

A. 3(m-1) B. (m-2) C. 1 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)P在正方形ABCD的對角線AC上,正方形的邊長是a,Rt△PEF的兩條直角邊PE、PF分別交BC、DC于點(diǎn)M、N.
(1)操作發(fā)現(xiàn):如圖2,固定點(diǎn)P,使△PEF繞點(diǎn)P旋轉(zhuǎn),當(dāng)PM⊥BC時,四邊形PMCN是正方形.填空:①當(dāng)AP=2PC時,四邊形PMCN的邊長是;②當(dāng)AP=nPC時(n是正實(shí)數(shù)),四邊形PMCN的面積是
(2)猜想論證 如圖3,改變四邊形ABCD的形狀為矩形,AB=a,BC=b,點(diǎn)P在矩形ABCD的對角線AC上,Rt△PEF的兩條直角邊PE、PF分別交BC、DC于點(diǎn)M、N,固定點(diǎn)P,使△PEF繞點(diǎn)P旋轉(zhuǎn),則 =
(3)拓展探究 如圖4,當(dāng)四邊形ABCD滿足條件:∠B+∠D=180°,∠EPF=∠BAD時,點(diǎn)P在AC上,PE、PF分別交BC,CD于M、N點(diǎn),固定P點(diǎn),使△PEF繞點(diǎn)P旋轉(zhuǎn),請?zhí)骄? 的值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小蘇和小林在如圖所示的跑道上進(jìn)行4×50米折返跑.在整個過程中,跑步者距起跑線的距離y(單位:m)與跑步時間t(單位:s)的對應(yīng)關(guān)系如下圖所示.下列敘述正確的是(

A. 兩人從起跑線同時出發(fā),同時到達(dá)終點(diǎn)

B. 小蘇跑全程的平均速度大于小林跑全程的平均速度

C. 小蘇前15s跑過的路程大于小林前15s跑過的路程

D. 小林在跑最后100m的過程中,與小蘇相遇2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,正方形ABCD中,∠MAN=45°,∠MAN繞點(diǎn)A順時針旋轉(zhuǎn),它的兩邊分別交CB、DC(或它們的延長線)于點(diǎn)M、N,AH⊥MN于點(diǎn)H.
(1)如圖①,當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM=DN時,請你直接寫出AH與AB的數(shù)量關(guān)系:;
(2)如圖②,當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM≠DN時,(1)中發(fā)現(xiàn)的AH與AB的數(shù)量關(guān)系還成立嗎?如果不成立請寫出理由,如果成立請證明;
(3)如圖③,已知∠MAN=45°,AH⊥MN于點(diǎn)H,且MH=2,NH=3,求AH的長.(可利用(2)得到的結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=kx﹣3的圖象如圖所示,則一元二次方程x2+x+k﹣1=0根的存在情況是( )

A.有兩個不相等的實(shí)數(shù)根
B.有兩個相等的實(shí)數(shù)根
C.沒有實(shí)數(shù)根
D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)P,Q分別為AD,CD邊上的點(diǎn),且DQ=CP,連接BQ,AP.求證:BQ=AP.

查看答案和解析>>

同步練習(xí)冊答案