【題目】如圖,AD⊥BC于D,AD=BD,AC=BE.
(1)求證:∠BED=∠C;
(2)猜想并說明BE和AC有什么數量和位置關系。
【答案】⑴見解析⑵BE=AC,BE⊥AC.證明見解析
【解析】
(1)根據直角三角形全等的判定HL易證得△ACD≌△BED,即可得∠BED=∠C;
(2)由(1)易得BE=AC.延長BE交AC于F,由于∠EBD+∠BED=90°,已證得∠BED=∠C,即可得∠EBD+∠C=90°,即可得BE和AC的位置關系為BE⊥AC.
(1)證明:∵AD⊥BC于D,AD=BD,AC=BE,
∴△ACD≌△BED(HL),
∴∠BED=∠C;
(2)解:BE和AC的數量和位置關系為:BE=AC,BE⊥AC.理由如下:
∵△ACD≌△BED,
∴BE=AC;
延長BE交AC于F,
∵∠EBD+∠BED=90°,∠BED=∠C,
∴∠EBD+∠C=90°,即BE⊥AC.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線MD相交于D,DE⊥AB交AB的延長線于E,DF⊥AC,現(xiàn)有下列結論:①DE=DF; ②DE+DF=AD; ③DM平分∠ADF; ④AB+AC=2AE,其中正確的個數有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】按要求作圖:已知A(﹣2,1),B(﹣1,2),C(﹣3,4).
(1)畫出與三角形ABC關于y軸對稱的三角形A1B1C1;
(2)將三角形A1B1C1先向右平移2個單位,再向下平移1個單位,得到三角形A2B2C2,則三角形A2B2C2頂點坐標分別為:A2 B2 C2 ;
(3)若點P(a,a﹣2)與點Q關于x軸對稱,PQ=2,則a的值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知頂點為(-3,-6)的拋物線經過點(-1,-4),下列結論:①b2>4ac;②ax2+bx+c≥-6;③若點(-2,m),(-5,n)在拋物線上,則m>n;④關于x的一元二次方程的兩根為﹣5和﹣1,其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知為所在平面內一點,且,,,垂足分別為點、,.
(1)如圖1,當點在邊上時,判斷的形狀;并證明你的結論;
(2)如圖2,當點在內部時,(1)中的結論是否仍然成立?若成立,請證明:若不成立,請舉出反例(畫圖說明,不需證明).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】近幾年,我國國家海洋局高度重視海上巡邏.如圖,上午9時,巡邏船位于A處,觀測到某港口城市P位于巡邏船的北偏西67.5°,巡邏船以21海里/時的速度向正北方向行駛,下午2時巡邏船到達B處,這時觀測到城市P位于巡邏船的南偏西36.9°方向,求此時巡邏船所在B處與城市P的距離?(參考數據:sin36.9°≈,tan36.9°≈,sin67.5°≈,tan67.5°≈)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,兩個全等直角三角形重疊在一起,將其中一個三角形沿著點B到點C的方向平移到△DEF的位置,AB=8,DH=3,平移距離為4,則陰影部分(即四邊形DOCF)的面積為___.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點F、B、E、C在同一直線上,并且BF=CE,∠ABC=∠DEF.能否由上面的已知條件證明△ABC≌△DEF?如果能,請給出證明;如果不能,請從下列三個條件中選擇一個合適的條件,添加到已知條件中,使△ABC≌△DEF,并給出證明.
提供的三個條件是:①AB=DE;②AC=DF;③AC∥DF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 年中秋節(jié)前夕,某代理商從廠家購進某品牌月餅的、 兩種禮盒,已知購進 種月餅盒、 種月餅盒共元,購進盒 種月餅比購進盒種多用元.
(1)求、兩種月餅禮盒的進價;
(2)若該代理商購進該品牌的這兩種禮盒月餅資金不超過元,購進盒數共盒,且購進種禮盒的數量不超過種禮盒數量的倍,共有幾種進貨方案?銷售時,銷售一盒種禮盒月餅可獲利元,銷售一盒種禮盒月餅可獲利元,并全部售完,請直接寫出獲利最多的進貨方案以及最大利潤.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com