精英家教網 > 初中數學 > 題目詳情

【題目】已知點P(1,3),將線段OP繞原點O按順時針方向旋轉90°得到線段OP,則點P的坐標是(

A. (﹣1,3) B. (1,﹣3) C. (3,﹣1) D. (3,1)

【答案】C

【解析】

先根據旋轉的性質,得到OP=OP',POP'=90°,再過PPDx軸于D,過P'P'Ex軸于E,得到POD≌△OP'E(AAS),即可得到P'E=OD=1,OE=PD=3,進而得出P'(3,-1).

解:如圖所示,由旋轉可得OP=OP',POP'=90°,

PPDx軸于D,過P'P'Ex軸于E,則

PDO=OEP'=90°,P+POD=P'OE+POD=90°,

∴∠P=P'OE,

PODOP'E中,

,

∴△POD≌△OP'E(AAS),

P'E=OD=1,OE=PD=3,

P'(3,-1),

故選:C.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】甲口袋里裝有2個相同的小球,它們分別寫有數字12;乙口袋里裝有3個相同的小球,它們分別寫有數字3,4,5;丙口袋里有2個相同的小球,它們分別寫有數字6,7,從三個口袋中各隨機地取出1個小球,按要求解答下列問題:

(1)畫出樹形圖”;

(2)取出的3個小球上只有1個偶數數字的概率是多少?

(3)取出的3個小球上全是奇數數字的概率是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形OBCD中的三個頂點在⊙O上,點A是⊙O上的一個動點(不與點B、C、D重合).

(1)若點A在優(yōu)弧上,且圓心O在∠BAD的內部,已知∠BOD=120°,則∠OBA+ODA= °.

(2)若四邊形OBCD為平行四邊形.

①當圓心O在∠BAD的內部時,求∠OBA+ODA的度數;

②當圓心O在∠BAD的外部時,請畫出圖形并直接寫出∠OBA與∠ODA的數量關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平面直角坐標系中,拋物線y=x2﹣2x與x軸交于O、B兩點,頂點為P,連接OP、BP,直線y=x﹣4與y軸交于點C,與x軸交于點D.

(1)寫出點B坐標;判斷△OBP的形狀;

(2)將拋物線沿對稱軸平移m個單位長度,平移的過程中交y軸于點A,分別連接CP、DP;

i)若拋物線向下平移m個單位長度,當SPCD= SPOC時,求平移后的拋物線的頂點坐標;

ii)在平移過程中,試探究SPCD和SPOD之間的數量關系,直接寫出它們之間的數量關系及對應的m的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,點是坐標原點,四邊形是菱形,點的坐標為,點軸的負半軸上,直線軸于點,邊交軸于點

1)如圖1,求直線的解析式;

2)如圖2,連接,動點從點出發(fā),沿線段方向以1個單位/秒的速度向終點勻速運動,設的面積為),點的運動時間為秒,求之間的函數關系式,并直接寫出自變量的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,有一張矩形紙片,長10cm,寬6cm,在它的四角各減去一個同樣的小正方形,然后折疊成一個無蓋的長方體紙盒.若紙盒的底面(圖中陰影部分)面積是32cm2,求剪去的小正方形的邊長.設剪去的小正方形邊長是xcm,根據題意可列方程為( 。

A. 10×6﹣4×6x=32 B. (10﹣2x)(6﹣2x)=32

C. (10﹣x)(6﹣x)=32 D. 10×6﹣4x2=32

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1cm、3cm、5cm、7cm、9cm的五條線段中,任選三條可以構成三角形的概率是________%.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,D,E,F分別是ABC各邊的中點,下列說法中錯誤的是( )

A. ABCDEF是相似形 B. ABCAEF是位似圖形 C. EFAD互相平分 D. AD平分∠BAC

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線經過點A(0,3),B(3,0),C(4,3).

(1)求拋物線的函數表達式;

(2)求拋物線的頂點坐標和對稱軸;

(3)把拋物線向上平移,使得頂點落在x軸上,直接寫出兩條拋物線、對稱軸和y軸圍成的圖形的面積S(圖中陰影部分).

查看答案和解析>>

同步練習冊答案