【題目】如圖,AB∥CD,點E是直線AB上的點,過點E的直線l交直線CD于點F,EG平分∠BEF交CD于點G.在直線l繞點E旋轉的過程中,圖中∠1,∠2的度數(shù)可以分別是( )
A.30°,110°B.56°,70°C.70°,40°D.100°,40°
【答案】C
【解析】
根據(jù)兩直線平行,內(nèi)錯角相等可得∠BEG,根據(jù)角平分線的定義得到∠BEF,根據(jù)鄰補角互補求出∠2即可求解.
解:A、∵AB∥CD,
∴∠BEG=∠1=30°,
∵EG平分∠BEF,
∴∠BEF=2∠BEG=60°.
∴∠2=180°﹣∠BEF=120°,不符合題意;
B、∵AB∥CD,
∴∠BEG=∠1=56°,
∵EG平分∠BEF,
∴∠BEF=2∠BEG=112°.
∴∠2=180°﹣∠BEF=68°,不符合題意;
C、∵AB∥CD,
∴∠BEG=∠1=70°,
∵EG平分∠BEF,
∴∠BEF=2∠BEG=140°.
∴∠2=180°﹣∠BEF=40°,符合題意;
D、∵AB∥CD,
∴∠BEG=∠1=100°,
∵EG平分∠BEF,
∴∠BEF=2∠BEG=200°.
∴∠2=360°﹣∠BEF=160°,不符合題意.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形中,對角線、相交于點,,,動點從點出發(fā),沿線段以的速度向點運動,同時動點從點出發(fā),沿線段以支向點運動,當其中一個動點停止時另一個動點也隨之停止,設運動時間為(單位:)(),以點為圓心,長為半徑的⊙M與射線、線段分別交于點、,連接.
(1)求的長(用含有的代數(shù)式表示),并求出的取值范圍;
(2)當為何值時,線段與⊙M相切?
(3)若⊙M與線段只有一個公共點,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,等邊△ABC,點 E 在 BA 的延長線上,點 D 在 BC 上,且 ED=EC.
(1)如圖 1,求證:AE=DB;
(2)如圖 2,將△BCE 繞點 C 順時針旋轉 60°至△ACF(點 B、E 的對應點分別為點 A、F),連接 EF.在不添加任何輔助線的情況下,請直接寫出圖中四對線段,使每對線段長度之差等于 AB 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在中,為的中點,是邊上一動點,連接.若設 (當點與點重合時,的值為),.
小明根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)隨自變量的變化而變化的規(guī)律進行了探究.
下面是小明的探究過程,請補充完整.
通過取點、畫圖、計算,得到了與的幾組值,如下表:
說明:補全表格時,相關數(shù)值保留一位小數(shù).
(參考數(shù)據(jù):) .
如圖2,描出剩余的點,并用光滑的曲線畫出該函數(shù)的圖象.
觀察圖象,下列結論正確的有 _ .
①函數(shù)有最小值,沒有最大值
②函數(shù)有最小值,也有最大值
③當時,隨著的增大而增大
④當時,隨著的增大而減小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB為半圓O的直徑,過點B作PB⊥OB,連接AP交半圓O于點C,D為BP上一點,CD是半圓O的切線.
(1)求證:CD=DP.
(2)已知半圓O的直徑為,PC=1,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:⊙O的兩條弦,相交于點,且.
(1)如圖1,連接,求證:.
(2)如圖2,在,在上取一點,使得,交于點,連接.
①判斷與是否相等,并說明理由.
②若,,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=3,點E為對角線AC上一點,EF⊥DE交AB于F,若四邊形AFED的面積為4,則四邊形AFED的周長為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CA=8,CB=6,動點P從C出發(fā)沿CA方向,以每秒1個單位長度的速度向A點勻速運動,到達A點后立即以原來速度沿AC返回;同時動點Q從點A出發(fā)沿AB以每秒1個單位長度向點B勻速運動,當Q到達B時,P、Q兩點同時停止運動.設P、Q運動的時間為t秒(t>0).
(1)當t為何值時,PQ∥CB?
(2)在點P從C向A運動的過程中,在CB上是否存在點E使△CEP與△PQA全等?若存在,求出CE的長;若不存在,請說明理由;
(3)伴隨著P、Q兩點的運動,線段PQ的垂直平分線DF交PQ于點D,交折線QB﹣BC﹣CP于點F.當DF經(jīng)過點C時,求出t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com