【題目】如圖 (1),已知△ABC是等邊三角形,以BC為直徑的⊙O交AB、AC于D、E.求證:
(1)△DOE是等邊三角形.
(2)如圖(2),若∠A=60°,AB≠AC , 則(1)中結(jié)論是否成立?如果成立,請給出證明;如果不成立,請說明理由.
【答案】
(1)
證明:∵△ABC為等邊三角形,
∴∠B=∠C=60°.
∵OB=OC=OE=OD,∴△OBD和△OEC都為等邊三角形.
∴∠BOD=∠EOC=60°.∴∠DOE=60°.
∴△DOE為等邊三角形.
(2)
解:當∠A=60°,AB≠AC時,(1)中的結(jié)論仍然成立.
證明:連結(jié)CD.∵BC為⊙O的直徑,
∴∠BDC=90°.∴∠ADC=90°.
∵∠A=60°,∴∠ACD=30°.∴∠DOE=2∠ACD=60°.
∵OD=OE,∴△DOE為等邊三角形.
【解析】(1)證明:∵△ABC為等邊三角形,
∴∠B=∠C=60°.
∵OB=OC=OE=OD,∴△OBD和△OEC都為等邊三角形.
∴∠BOD=∠EOC=60°.∴∠DOE=60°.
∴△DOE為等邊三角形.
(2)當∠A=60°,AB≠AC時,(1)中的結(jié)論仍然成立.
證明:連結(jié)CD.∵BC為⊙O的直徑,
∴∠BDC=90°.∴∠ADC=90°.
∵∠A=60°,∴∠ACD=30°.∴∠DOE=2∠ACD=60°.
∵OD=OE,∴△DOE為等邊三角形.
【考點精析】本題主要考查了等邊三角形的性質(zhì)和圓周角定理的相關(guān)知識點,需要掌握等邊三角形的三個角都相等并且每個角都是60°;頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】有一個面積為1的正方形,經(jīng)過一次“生長”后,在它的左右肩上生出兩個小正方形(如圖1),其中,三個正方形圍成的三角形是直角三角形,再經(jīng)過一次“生長”后,生出了4個正方形(如圖2),如果按此規(guī)律繼續(xù)“生長”下去,它將變得“枝繁葉茂”.在“生長”了2 017次后形成的圖形中所有正方形的面積和是( )
圖1 圖2
A. 2015 B. 2016 C. 2017 D. 2018
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩家超市以相同的價格出售同樣的商品,為了吸引顧客,各自推出不同的優(yōu)惠方案:在甲超市累計購買商品超出300元之后,超出部分按原價8折優(yōu)惠;在乙超市累計購買商品超出200元之后,超出部分按原價8.5折優(yōu)惠.設顧客預計累計購物元().
(1)請用含的代數(shù)式分別表示顧客在兩家超市購物所付的費用;
(2)李明準備購買500元的商品,你認為他應該去哪家超市?請說明理由;
(3)計算一下,李明購買多少元的商品時,到兩家超市購物所付的費用一樣?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在y軸右側(cè)且平行于y軸的直線l被反比例函數(shù)()與函數(shù)()所截,當直線l向右平移4個單位時,直線l被兩函數(shù)圖象所截得的線段掃過的面積為__________平方單位.
【答案】8
【解析】∵y軸右側(cè)且平行于y軸的直線l被反比例函數(shù)y=(x>0)與函數(shù)y=+2(x>0)所截,∴設它們的交點為A,C,∴AC=2,∵直線l向右平移4個單位,∴CD=4,∴直線l被兩函數(shù)圖象所截得的線段掃過的面積為 2×4=8平方單位.故答案為8.
【題型】填空題
【結(jié)束】
14
【題目】函數(shù)的圖象如右圖所示,則結(jié)論:
①兩函數(shù)圖象的交點的坐標為; ②當時, ;
③當時, ; ④當逐漸增大時, 隨著的增大而增大, 隨著的增大而減。
其中正確結(jié)論的序號是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,函數(shù)y= 和y= 在第一象限的圖像,點P1,P2,P3,……,P2011都是曲線上的點,它們的橫坐標分別為x1,x2,x3,……,x2011,縱坐標分別為1,3,5,7……,是連續(xù)的2011個奇數(shù),過各個P點作y的平行線,與另一雙曲線交點分別是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),……,Q2012(x2012,y2012),則y2012=___________
【答案】
【解析】由題意得,P2012(x2012,4023),因為點P2012在y=的圖象上,所以x2012=,把x2012=代入 y=中得y2012==,故答案為.
【題型】填空題
【結(jié)束】
17
【題目】已知y是x的反比例函數(shù),且當x=-4時,y=,
(1)求這個反比例函數(shù)關(guān)系式和自變量x的取值范圍;
(2)求當x=6時函數(shù)y的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有下列說法:①若DE∥AB,則∠DEF+∠EFB=180;
②能與∠DEF構(gòu)成內(nèi)錯角的角的個數(shù)有2個;③能與∠BFE構(gòu)
成同位角的角的個數(shù)有2個;④能與∠C構(gòu)成同旁內(nèi)角的角的個數(shù)有4個.其中結(jié)論正確的是( )
A. ①② B. ③④ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖17-Z-12所示,等腰三角形ABC的底邊長為8 cm,腰長為5 cm,一動點P在底邊上從點B向點C以0.25 cm/s的速度移動,請你探究:當點P運動幾秒時,點P與頂點A的連線AP與腰垂直?
圖17-Z-12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,AD=5,BC=9,以A為中心將腰AB順時針旋轉(zhuǎn)90°至AE,連接DE,則△ADE的面積等于( )
A.10
B.11
C.12
D.13
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,AD=10,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,AG=2.5,則△CEF的周長為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com