【題目】已知某市2016年企業(yè)用水量x(噸)與該月應交的水費y(元)之間的函數(shù)關系如圖.
(1)當x≥50時,求y關于x的函數(shù)關系式;
(2)若某企業(yè)2016年10月份的水費為620元,求該企業(yè)2016年10月份的用水量;
(3)為鼓勵企業(yè)節(jié)約用水,該市自2017年1月開始對月用水量超過80噸的企業(yè)加收污水處理費,規(guī)定:若企業(yè)月用水量x超過80噸,則除按2016年收費標準收取水費外,超過80噸的部分每噸另加收元的污水處理費,若某企業(yè)2017年3月份的水費和污水處理費共600元,求這個企業(yè)3月份的用水量.
【答案】(1)y=6x﹣100;(2)120噸;(3)100噸.
【解析】(1)設y關于x的函數(shù)關系式y(tǒng)=kx+b,代入(50,200)、(60,260)兩點求得解析式即可;
(2)把y=620代入(1)求得答案即可;
(3)利用水費+污水處理費=600元,列出方程解決問題,
解:(1)設y關于x的函數(shù)關系式y(tǒng)=kx+b,
∵直線y=kx+b經過點(50,200),(60,260),
∴,解得.
∴y關于x的函數(shù)關系式是y=6x﹣100.
(2)由圖可知,當y=620時,x>50,
∴6x﹣100=620,解得x=120.
答:該企業(yè)2013年10月份的用水量為120噸.
(3)由題意得,,
化簡得x2+40x﹣14000=0
解得:x1=100,x2=﹣140(不合題意,舍去).
答:這個企業(yè)2014年3月份的用水量是100噸.
“點睛”此題考查一次函數(shù)的運用,一元二次方程和一元一次方程的運用,注意理解題意,結合圖象,根據實際選擇合理的方法解答.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩長方形的邊長如圖所示(m為正整數(shù)),其面積分別為S1、S2.
(1)用“<”或“>”號填空:S1 S2;
(2)若一個正方形與甲的周長相等.
①求該正方形的邊長(用含m的代數(shù)式表示);
②若該正方形的面積為S3,試探究:S3與S1的差(即S3﹣S1)是否為常數(shù)?若為常數(shù),求出這個常數(shù);如果不是,請說明理由;
(3)若滿足條件0<n<|S1﹣S2|的整數(shù)n有且只有10個,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,在平面直角坐標系xOy中,點A、B、C分別為坐標軸上上的三個點,且OA=1,OB=3,OC=4,
(1)求經過A、B、C三點的拋物線的解析式;
(2)在平面直角坐標系xOy中是否存在一點P,使得以以點A、B、C、P為頂點的四邊形為菱形?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)若點M為該拋物線上一動點,在(2)的條件下,請求出當|PM﹣AM|的最大值時點M的坐標,并直接寫出|PM﹣AM|的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次活動中,主辦方共準備了3600盆甲種花和2900盆乙種花,計劃用甲、乙兩種花搭造出A、B兩種園藝造型共50個,搭造要求的花盆數(shù)如下表所示:
請問符合要求的搭造方案有幾種?請寫出具體的方案。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(-4,),B(-1,2)是一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0,m<0)圖象的兩個交點,AC⊥x軸于點C,BD⊥y軸于點D.
(1)根據圖象直接回答:在第二象限內,當x取何值時,一次函數(shù)的值大于反比例函數(shù)的值?
(2)求一次函數(shù)解析式及m的值;
(3)P是線段AB上的一點,連結PC、PD,若△PCA和△PDB面積相等,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了做好大課間活動,計劃用400元購買10件體育用品,備選體育用品及單價如下表(單位:元)
備用體育用品 | 籃球 | 排球 | 羽毛球拍 |
單位(元) | 50 | 40 | 25 |
(1)若400元全部用來購買籃球和羽毛球拍共10件,問籃球和羽毛球拍各購買多少件?
(2)若400元全部用來購買籃球、排球和羽毛球拍三種共10件,能實現(xiàn)嗎?若能,求出籃球、排球、羽毛球拍各購買多少件;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A(3,0),B(﹣1,0)兩點,與y軸相交于點C(0,﹣3)
(1)求該二次函數(shù)的解析式;
(2)設E是y軸右側拋物線上異于點A的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH,則在點E的運動過程中,當矩形EFGH為正方形時,求出該正方形的邊長;
(3)設P點是x軸下方的拋物線上的一個動點,連接PA、PC,求△PAC面積的取值范圍,若△PAC面積為整數(shù)時,這樣的△PAC有幾個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市建設森林城市需要大量的樹苗,某生態(tài)示范園負責對甲、乙、丙、丁四個品種的樹苗共500株進行樹苗成活率試驗,從中選擇成活率高的品種進行推廣.通過試驗得知:丙種樹苗的成活率為89.6%,把試驗數(shù)據繪制成下面兩幅統(tǒng)計圖.(部分信息未給出)
(1)試驗所用的乙種樹苗的數(shù)量是_______株;
(2)求出丙種樹苗的成活數(shù),并把圖②補充完整;
(3)你認為應選哪種樹苗進行推廣?請通過計算說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com