【題目】我校小偉同學酷愛健身,一天去爬山鍛煉,在出發(fā)點C處測得山頂部A的仰角為30度,在爬山過程中,每一段平路(CDEF、GH)與水平線平行,每一段上坡路(DE、FG、HA)與水平線的夾角都是45度,在山的另一邊有一點BB、CD同一水平線上),斜坡AB的坡度為21,且AB長為900,其中小偉走平路的速度為65.7/分,走上坡路的速度為42.3/分.則小偉從C出發(fā)到坡頂A的時間為( 。▓D中所有點在同一平面內(nèi)1.411.73

A.60分鐘B.70分鐘C.80分鐘D.90分鐘

【答案】C

【解析】

如圖,作APBCP,延長AHBCQ,延長EFAQT.想辦法求出AQCQ即可解決問題.

解:如圖,作APBCP,延長AHBCQ,延長EFAQT

由題意:2,AQAH+FG+DECQCD+EF+GH,∠AQP45°,

∵∠APB90°,AB900

PB900,PA1800,

∵∠PQA=∠PAQ45°,

PAPQ1800AQPA1800,

∵∠C30°,

PCPA1800

CQ18001800

∴小偉從C出發(fā)到坡頂A的時間=80(分鐘),

故選:C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】新冠肺炎疫情期間,部分小區(qū)出現(xiàn)防疫物資緊缺,某愛心組織緊急籌集了部分資金,計劃購買甲、乙兩種防疫物品共2000件送往各小區(qū),已知每件甲種物品的價格比每件乙種物品的價格貴10元,用350元購買甲種物品的件數(shù)恰好與用300元購買乙種物品的件數(shù)相同

1)求甲、乙兩種防疫物品每件的價格各是多少元?

2)經(jīng)調(diào)查,各小區(qū)對乙種物品件數(shù)的需求量是甲種物品件數(shù)的3倍,若該愛心組織按照此需求的比例購買這2000件物品,需籌集資金多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角ABC中,BAC=90°,D在BC上,連接AD,作BFAD分別交AD于E,AC于F.

(1)如圖1,若BD=BA,求證:ABE≌△DBE;

(2)如圖2,若BD=4DC,取AB的中點G,連接CG交AD于M,求證:GM=2MC;AG2=AFAC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰△ABC中,ABBC,以AB為直徑的半圓分別交AC、BC于點D、E兩點,BF⊙O相切于點B,交AC的延長線于點F

1)求證:DAC的中點;

2)若AB12,sinCAE,求CF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,漁船跟蹤魚群由西向東航行,到達A處時,測得小島C位于它的北偏東53°方向,再航行后達到B處(),測得小島C位于它的北偏東45°方向.小島C的周圍內(nèi)有暗礁,如果漁船不改變航向繼續(xù)向東航行,請你通過計算說明漁船有無觸礁的危險?

(參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 拋物線軸交于點A(-1,0),頂點坐標(1,n)與軸的交點在(0,2),(0,3)之間(包 含端點),則下列結(jié)論:①;②;③對于任意實數(shù)m,總成立;④關(guān)于的方程有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為  

A. 1 個 B. 2 個 C. 3 個 D. 4 個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題情境:

在綜合與實踐課上,老師讓同學們以矩形紙片的剪拼為主題開展數(shù)學活動.如圖1,將矩形紙片沿對角線剪開,得到.并且量得,.

操作發(fā)現(xiàn):

(1)將圖1中的以點為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn),使,得到如圖2所示的,過點的平行線,與的延長線交于點,則四邊形的形狀是________.

(2)創(chuàng)新小組將圖1中的以點為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn),使、三點在同一條直線上,得到如圖3所示的,連接,取的中點,連接并延長至點,使,連接、,得到四邊形,發(fā)現(xiàn)它是正方形,請你證明這個結(jié)論.

實踐探究:

(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進行如下操作:將沿著方向平移,使點與點重合,此時點平移至點,相交于點,如圖4所示,連接,試求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家家電下鄉(xiāng)政策的實施,商場決定采取適當?shù)慕祪r措施.調(diào)查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.

1)假設(shè)每臺冰箱降價x元,商場每天銷售這種冰箱的利潤是y元,請寫出yx之間的函數(shù)表達式;(不要求寫自變量的取值范圍)

2)商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應(yīng)降價多少元?

3)每臺冰箱降價多少元時,商場每天銷售這種冰箱的利潤最高?最高利潤是多少?

查看答案和解析>>

同步練習冊答案