【題目】已知關于x的方程3x2-(a-3)x-a=0(a>0).
(1)求證:方程總有兩個不相等的實數(shù)根;
(2)若方程有一個根大于2,求a的取值范圍.
科目:初中數(shù)學 來源: 題型:
【題目】對于一個兩位數(shù),十位數(shù)字是,個位數(shù)字是,總有,我們把十位上的數(shù)與個位上的數(shù)的平方和叫做這個兩位數(shù)的“平方和數(shù)”,把十位上的數(shù)與個位上的數(shù)的平方差叫做“平方差數(shù)”。例如,對兩位數(shù)43來說,,,所以25和7分別是43的“平方和數(shù)”與“平方差數(shù)”。
(1)76的“平方和數(shù)”是_____________,“平萬差數(shù)”是____________.
(2)5可以是___________的“平方差數(shù)”.
(3)若一個數(shù)的“平方和數(shù)”是10,“平方差數(shù)”是8,則這個數(shù)是______.
(4)若一個數(shù)的“平方和數(shù)”,與它的“平方差數(shù)”相等,那么這個數(shù)滿足什么特征?為什么?(寫出說明過程)
(5)若一個數(shù)的“平方差數(shù)”等子它十位上的數(shù)與個位上的數(shù)差的十倍,此時,我們把它叫做“湊整數(shù)”,請你寫出兩個這樣的湊整數(shù)_____________,__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x+3.
(1)畫出這個函數(shù)的圖象;
(2)根據(jù)圖象,直接寫出;
①當函數(shù)值y為正數(shù)時,自變量x的取值范圍;
②當﹣2<x<2時,函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種蔬菜的價格隨季節(jié)變化如下表,根據(jù)表中信息,下列結論錯誤的是( )
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
價格 (元/千克) | 5.00 | 5.50 | 5.00 | 4.80 | 2.00 | 1.50 | 1.00 | 0.90 | 1.50 | 3.00 | 2.50 | 3.50 |
A. 是自變量,是因變量
B. 2月份這種蔬菜價格最高,為5.50元/千克
C. 2-8月份這種蔬菜價格一直在下降
D. 8-12月份這種蔬菜價格一直在上升
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點是線段上的動點(點與不重合),分別以為邊向線段的同一側作正和正.
(1)請你判斷與有怎樣的數(shù)量關系?請說明理由;
(2)連接,相交于點,設,那么的大小是否會隨點的移動而變化?請說明理由;
(3)如圖2,若點固定,將繞點按順時針方向旋轉(旋轉角小于),此時的大小是否發(fā)生變化?(只需直接寫出你的猜想,不必證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,PA、PB切⊙O于A、B兩點,CD切⊙O于點E,交PA,PB于C、D,若⊙O的半徑為r,△PCD的周長等于3r,則tan∠APB的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】南沙群島是我國固有領土,現(xiàn)在我南海漁民要在南沙某海島附近進行捕魚作業(yè),當漁船航行至B處時,測得該島位于正北方向海里的C處,為了防止某國還巡警干擾,就請求我A處的魚監(jiān)船前往C處護航,已知C位于A處的北偏東45°方向上,A位于B的北偏西30°的方向上,求A、C之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中:①0是最小的整數(shù);②有理數(shù)不是正數(shù)就是負數(shù);③正整數(shù)、負整數(shù)、正分數(shù)、負分數(shù)統(tǒng)稱為有理數(shù);④非負數(shù)就是正數(shù);④不僅是有理數(shù),而且是分數(shù);⑤是無限不循環(huán)小數(shù),所以不是有理數(shù);⑥無限小數(shù)不都是有理數(shù);⑦正數(shù)中沒有最小的數(shù),負數(shù)中沒有最大的數(shù).其中錯誤的說法的個數(shù)為( )
A. 7個B. 6個C. 5個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】張丘建,我國南北朝時期(約公元5世紀)著名的數(shù)學家,著有《張丘建算經(jīng)》.一次宴會上,張丘建出了一道題:“現(xiàn)有一只鹿向西跑,當獵人追至處時,與鹿所在的處還差36步(古代:1里=300步);鹿突然向北跑,此時騎馬的獵人就沿著追去,追了50步至處與鹿所在的位置處還差10步(點、、在同一直線上).如果此鹿不向北轉,而繼續(xù)向西跑,獵人需要追多遠才能追上此鹿?”,已知單位時間內鹿跑的路程和獵人騎馬追趕的路程的比值是定值,請解答這個問題.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com