【題目】已知二次函數(shù)y=﹣x2+2x+3.

(1)畫出這個函數(shù)的圖象;

(2)根據(jù)圖象,直接寫出;

①當函數(shù)值y為正數(shù)時,自變量x的取值范圍;

②當﹣2<x<2時,函數(shù)值y的取值范圍.

【答案】(1)見解析;(2)①﹣1<x<3;②﹣5<y<4.

【解析】試題分析:1)把二次函數(shù)的一般式轉(zhuǎn)化成頂點式即可求得頂點坐標;根據(jù)5點畫出函數(shù)的圖象;

2①根據(jù)函數(shù)的圖象即可求得;②根據(jù)函數(shù)的圖象即可求得.

試題解析:1y=﹣x2+2x+3=﹣x﹣12+4

∴函數(shù)圖象的頂點坐標(1,4);

函數(shù)的圖象如圖:

2)根據(jù)圖象可知:

①函數(shù)值y為正數(shù)時,自變量x的取值范圍為﹣1x3;

②當﹣2x2時,函數(shù)值y的取值范圍﹣5y4

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,對角線ACBD相交于點O,BD2AD,E、FG分別是OC、ODAB的中點,下列結(jié)論:①BEAC②EGEF;EFG≌△GBE;④EA平分∠GEF四邊形BEFG是菱形.其中正確的個數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】基本圖形:在RTABC中,AB=AC,DBC邊上一點(不與點B,C重合),將線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE

探索:(1)連接EC,如圖①,試探索線段BC,CDCE之間滿足的等量關(guān)系,并證明結(jié)論;

2)連接DE,如圖②,試探索線段DEBD,CD之間滿足的等量關(guān)系,并證明結(jié)論;

聯(lián)想:(3)如圖③,在四邊形ABCD中,∠ABC=ACB=ADC=45°,若BD=7CD=2,則AD的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于圓O,連接BD,∠BAD=105°,∠DBC=75°.

(1)求證:BDCD;

(2)若圓O的半徑為3,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某汽車專賣店經(jīng)銷某種型號的汽車.已知該型號汽車的進價為萬元/輛,經(jīng)銷一段時間后發(fā)現(xiàn):當該型號汽車售價定為萬元/輛時,平均每周售出輛;售價每降低萬元,平均每周多售出輛.

1)當售價為萬元/輛時,平均每周的銷售利潤為___________萬元;

2)若該店計劃平均每周的銷售利潤是萬元,為了盡快減少庫存,求每輛汽車的售價.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC中,AB=4.BM平分∠ABCAC于點M,點D為射線BM上一點,以點B為旋轉(zhuǎn)中心將線段BD逆時針旋轉(zhuǎn)60°得到線段BE,連接DE.交射線BA于點F,連接AD、AE.當以AD、M為頂點的三角形與AEF全等時,DE的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC中,AB=12cm,動點P從點A出發(fā)以1cm/s的速度沿AC勻速運動,動點Q同時從點B出發(fā)以同樣的速度沿CB的延長線方向勻速運動,當點P到達點C時,點PQ同時停止運動.設(shè)運動時間為ts,過點PPEAB于點E,連接PQAB于點D.

⑴當t為何值時,CPQ為直角三角形?

⑵求DE的長.

⑶取線段BC的中點M,連接PM,將CPM沿直線PM翻折,得到C,PM,連接AC,,當t= 時,AC的值最小,最小值為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的方程3x2-(a-3)xa=0(a>0).

(1)求證:方程總有兩個不相等的實數(shù)根;

(2)若方程有一個根大于2,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小螞蟻在9×9的小方格上沿著網(wǎng)格線運動(每小格邊長為1),一只螞蟻在C處找到食物后,要通知A、B、D、E處的其他小螞蟻,我們把它的行動規(guī)定:向上或向右為正,向下或向左為負。如果從CD記為:CD(+2,-3)(第一個數(shù)表示左、右方向,第二個數(shù)表示上、下方向),那么;

1CB(  。,CE(  。,D (-4,-3),D ,+3);

2)若這只小螞蟻的行走路線為CEDBAC,請你計算小螞蟻走過的路程.

查看答案和解析>>

同步練習冊答案