【題目】如圖,在等邊三角形ABC中,AB=4.BM平分∠ABCAC于點M,點D為射線BM上一點,以點B為旋轉(zhuǎn)中心將線段BD逆時針旋轉(zhuǎn)60°得到線段BE,連接DE.交射線BA于點F,連接ADAE.當以A、D、M為頂點的三角形與AEF全等時,DE的長為______.

【答案】,4

【解析】

分點D在線段BM上,點D在線段BM的延長線上時,兩種情形分別求解即可.

解:如圖,

AFE≌△AMD時,AF=AM

∵∠AFD=AMD=90°,
AD=AD,
RtADFRtADMHL),
∴∠DAF=DAM=30°,
∴∠DBA=DAB=30°,
DA=DB,
DFAB
∴∠BDF=60°,BF=AF=2,
BD=BE,
∴△BDE是等邊三角形,
DF=EF=BFtan30°=,
DE=2EF=
如圖,當點DBM的延長線時,易證AF=AM=2DE=2DF=

如圖,當EF=AM=DF時,也滿足條件,此時DE=BD=AB=4

故答案為:4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=,OC=,則另一直角邊BC的長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列調(diào)查中,最適宜采用全面調(diào)查方式(普查)的是(

A. 對襄陽市中學生每天課外讀書所用時間的調(diào)查

B. 對全國中學生心理健康現(xiàn)狀的調(diào)查

C. 對七年級(2)班學生米跑步成績的調(diào)查

D. 對市面某品牌中性筆筆芯使用壽命的調(diào)查

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,△ABC△DBC都是邊長為2的等邊三角形.

1)以圖1中的某個點為旋轉(zhuǎn)中心,旋轉(zhuǎn)△DBC,就能使△DBC△ABC重合,則滿足題意的點為: (寫出符合條件的所有點);

2)將△DBC沿BC方向平移得到△D1B1C1,如圖2、圖3,則四邊形ABD1C1是平行四邊形嗎?證明你的結(jié)論;

3)在(2)的條件下,當BB1= 時,四邊形ABD1C1為矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+2x+3.

(1)畫出這個函數(shù)的圖象;

(2)根據(jù)圖象,直接寫出;

①當函數(shù)值y為正數(shù)時,自變量x的取值范圍;

②當﹣2<x<2時,函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,點P從點B出發(fā),沿對角線BD向點D勻速運動,速度為4cm/s,過點P作PQ⊥BD交BC于點Q,以PQ為一邊作正方形PQMN,使得點N落在射線PD上.點O從點D出發(fā),沿DC向點C勻速運動,速度為3cm/s,以O為圓心,1cm半徑作⊙O.點P與點D同時出發(fā),設它們的運動時間為t(單位:s) (0≤t≤).

(1)如圖1,連接DQ,若DQ平分∠BDC,則t的值為   s;

(2)如圖2,連接CM,設△CMQ的面積為S,求S關于t的函數(shù)關系式;

(3)在運動過程中,當t為何值時,⊙O與MN第一次相切?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種蔬菜的價格隨季節(jié)變化如下表,根據(jù)表中信息,下列結(jié)論錯誤的是( )

月份

1

2

3

4

5

6

7

8

9

10

11

12

價格 (元/千克)

5.00

5.50

5.00

4.80

2.00

1.50

1.00

0.90

1.50

3.00

2.50

3.50

A. 是自變量,是因變量

B. 2月份這種蔬菜價格最高,為5.50元/千克

C. 2-8月份這種蔬菜價格一直在下降

D. 8-12月份這種蔬菜價格一直在上升

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA、PB切O于A、B兩點,CD切O于點E,交PA,PB于C、D,若O的半徑為rPCD的周長等于3r,則tanAPB的值是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,點E、F分別是CD、BC的中點,AEDF交于點P,連接CP,則CP_____

查看答案和解析>>

同步練習冊答案