【題目】如圖,在等邊三角形ABC中,AB=4.作BM平分∠ABC交AC于點M,點D為射線BM上一點,以點B為旋轉(zhuǎn)中心將線段BD逆時針旋轉(zhuǎn)60°得到線段BE,連接DE.交射線BA于點F,連接AD、AE.當以A、D、M為頂點的三角形與△AEF全等時,DE的長為______.
【答案】,4,
【解析】
分點D在線段BM上,點D在線段BM的延長線上時,兩種情形分別求解即可.
解:如圖,
當△AFE≌△AMD時,AF=AM,
∵∠AFD=∠AMD=90°,
∵AD=AD,
∴Rt△ADF≌Rt△ADM(HL),
∴∠DAF=∠DAM=30°,
∴∠DBA=∠DAB=30°,
∴DA=DB,
∵DF⊥AB,
∴∠BDF=60°,BF=AF=2,
∵BD=BE,
∴△BDE是等邊三角形,
∴DF=EF=BFtan30°=,
∴DE=2EF=.
如圖,當點D在BM的延長線時,易證AF=AM=2,DE=2DF=.
如圖,當EF=AM=DF時,也滿足條件,此時DE=BD=AB=4,
故答案為:或或4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=,OC=,則另一直角邊BC的長為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列調(diào)查中,最適宜采用全面調(diào)查方式(普查)的是( )
A. 對襄陽市中學生每天課外讀書所用時間的調(diào)查
B. 對全國中學生心理健康現(xiàn)狀的調(diào)查
C. 對七年級(2)班學生米跑步成績的調(diào)查
D. 對市面某品牌中性筆筆芯使用壽命的調(diào)查
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC和△DBC都是邊長為2的等邊三角形.
(1)以圖1中的某個點為旋轉(zhuǎn)中心,旋轉(zhuǎn)△DBC,就能使△DBC與△ABC重合,則滿足題意的點為: (寫出符合條件的所有點);
(2)將△DBC沿BC方向平移得到△D1B1C1,如圖2、圖3,則四邊形ABD1C1是平行四邊形嗎?證明你的結(jié)論;
(3)在(2)的條件下,當BB1= 時,四邊形ABD1C1為矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x+3.
(1)畫出這個函數(shù)的圖象;
(2)根據(jù)圖象,直接寫出;
①當函數(shù)值y為正數(shù)時,自變量x的取值范圍;
②當﹣2<x<2時,函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,點P從點B出發(fā),沿對角線BD向點D勻速運動,速度為4cm/s,過點P作PQ⊥BD交BC于點Q,以PQ為一邊作正方形PQMN,使得點N落在射線PD上.點O從點D出發(fā),沿DC向點C勻速運動,速度為3cm/s,以O為圓心,1cm半徑作⊙O.點P與點D同時出發(fā),設它們的運動時間為t(單位:s) (0≤t≤).
(1)如圖1,連接DQ,若DQ平分∠BDC,則t的值為 s;
(2)如圖2,連接CM,設△CMQ的面積為S,求S關于t的函數(shù)關系式;
(3)在運動過程中,當t為何值時,⊙O與MN第一次相切?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種蔬菜的價格隨季節(jié)變化如下表,根據(jù)表中信息,下列結(jié)論錯誤的是( )
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
價格 (元/千克) | 5.00 | 5.50 | 5.00 | 4.80 | 2.00 | 1.50 | 1.00 | 0.90 | 1.50 | 3.00 | 2.50 | 3.50 |
A. 是自變量,是因變量
B. 2月份這種蔬菜價格最高,為5.50元/千克
C. 2-8月份這種蔬菜價格一直在下降
D. 8-12月份這種蔬菜價格一直在上升
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,PA、PB切⊙O于A、B兩點,CD切⊙O于點E,交PA,PB于C、D,若⊙O的半徑為r,△PCD的周長等于3r,則tan∠APB的值是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com