【題目】如圖,在等邊三角形ABC中,AB=12cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以1cm/s的速度沿AC勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)從點(diǎn)B出發(fā)以同樣的速度沿CB的延長(zhǎng)線方向勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),點(diǎn)P,Q同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為ts,過(guò)點(diǎn)P作PE⊥AB于點(diǎn)E,連接PQ交AB于點(diǎn)D.
⑴當(dāng)t為何值時(shí),△CPQ為直角三角形?
⑵求DE的長(zhǎng).
⑶取線段BC的中點(diǎn)M,連接PM,將△CPM沿直線PM翻折,得到△C,PM,連接AC,,當(dāng)t= 時(shí),AC,的值最小,最小值為 .
【答案】(1)4;(2)6;(3),
【解析】
(1)由△ABC是等邊三角形,可知∠C=60°,再由CQ=2CP列式即可求得t的值;
(2)過(guò)點(diǎn)Q作QF⊥AB交AB的延長(zhǎng)線于F,易證△PEA≌△QFB(AAS),則EF=AB=12cm,易證△PED≌△QFD(AAS),DE=DF,即可求得DE=EF=6;
(3)分析可知,點(diǎn)的軌跡為如圖所示,過(guò)點(diǎn)P作PN⊥MN,當(dāng)A,,M三點(diǎn)共線時(shí),有最小值,再根據(jù)等邊三角形性質(zhì)及直角三角形性質(zhì)求解即可.
解:(1)∵△ABC是等邊三角形,
∴∠C=60°,
∴當(dāng)CQ=2CP時(shí),∠CPQ=90°,
∴12+t=2(12-t),
∴t=4,
∴t=4時(shí),△CPQ是直角三角形.
(2)如圖,過(guò)點(diǎn)Q作QF⊥AB交AB的延長(zhǎng)線于F,
∵PE⊥AB,
∴∠PEA=∠F=90°,
∵PA=QB,∠A=∠ABC=∠QBF=60°,
∴△PEA≌△QFB(AAS),
∴AE=BF,
∴EF=AB=12cm,
∵∠PED=∠F=90°,∠PDE=∠QDF,PE=QF,
∴△PED≌△QFD(AAS),
∴DE=DF,
∴DE=EF=6.
(3)分析可知,點(diǎn)的軌跡為如圖所示,過(guò)點(diǎn)P作PN⊥MN,
∴當(dāng)A,,M三點(diǎn)共線時(shí),有最小值,
∵△ABC為等邊三角形,M為BC中點(diǎn),
∴AM⊥BC,∠ACM=60°,
∴,
∴,
又∵,
∴,
設(shè),則,
∴,
又∵,
∴,
∴,
解得:,
∴,
∴,
∴
∴,
即當(dāng)時(shí),AC,的值最小,最小值為,
故答案為:,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF為正三角形,點(diǎn)E、F分別在菱形的邊BC、CD上滑動(dòng),且E、F不與B、C、D重合.
(1)證明不論E、F在BC.CD上如何滑動(dòng),總有BE=CF;
(2)當(dāng)點(diǎn)E、F在BC.CD上滑動(dòng)時(shí),分別探討四邊形AECF的面積和△CEF的周長(zhǎng)是否發(fā)生變化?如果不變,求出這個(gè)定值;如果變化,求出最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,直線y=x+4交于x軸于點(diǎn)A,交y軸于點(diǎn)C,過(guò)A、C兩點(diǎn)的拋物線F1交x軸于另一點(diǎn)B(1,0).
(1)求拋物線F1所表示的二次函數(shù)的表達(dá)式;
(2)若點(diǎn)M是拋物線F1位于第二象限圖象上的一點(diǎn),設(shè)四邊形MAOC和△BOC的面積分別為S四邊形MAOC和S△BOC,記S=S四邊形MAOC﹣S△BOC,求S最大時(shí)點(diǎn)M的坐標(biāo)及S的最大值;
(3)如圖②,將拋物線F1沿y軸翻折并“復(fù)制”得到拋物線F2,點(diǎn)A、B與(2)中所求的點(diǎn)M的對(duì)應(yīng)點(diǎn)分別為A′、B′、M′,過(guò)點(diǎn)M′作M′E⊥x軸于點(diǎn)E,交直線A′C于點(diǎn)D,在x軸上是否存在點(diǎn)P,使得以A′、D、P為頂點(diǎn)的三角形與△AB′C相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x+3.
(1)畫出這個(gè)函數(shù)的圖象;
(2)根據(jù)圖象,直接寫出;
①當(dāng)函數(shù)值y為正數(shù)時(shí),自變量x的取值范圍;
②當(dāng)﹣2<x<2時(shí),函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1:y=x+與y軸的交點(diǎn)為A,直線l1與直線l2:y=kx的交點(diǎn)M的坐標(biāo)為M(3,a).
⑴a= ,k= ;
⑵直接寫出關(guān)于x的不等式x+≥kx>0的解集 ;
⑶若點(diǎn)B在x軸上,MB=MA,直接寫出點(diǎn)B的坐標(biāo) .
⑷在x軸上是否存在一點(diǎn)N,使得NM-NA的值最大,若不存在,請(qǐng)說(shuō)明理由;若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種蔬菜的價(jià)格隨季節(jié)變化如下表,根據(jù)表中信息,下列結(jié)論錯(cuò)誤的是( )
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
價(jià)格 (元/千克) | 5.00 | 5.50 | 5.00 | 4.80 | 2.00 | 1.50 | 1.00 | 0.90 | 1.50 | 3.00 | 2.50 | 3.50 |
A. 是自變量,是因變量
B. 2月份這種蔬菜價(jià)格最高,為5.50元/千克
C. 2-8月份這種蔬菜價(jià)格一直在下降
D. 8-12月份這種蔬菜價(jià)格一直在上升
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)是線段上的動(dòng)點(diǎn)(點(diǎn)與不重合),分別以為邊向線段的同一側(cè)作正和正.
(1)請(qǐng)你判斷與有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
(2)連接,相交于點(diǎn),設(shè),那么的大小是否會(huì)隨點(diǎn)的移動(dòng)而變化?請(qǐng)說(shuō)明理由;
(3)如圖2,若點(diǎn)固定,將繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)(旋轉(zhuǎn)角小于),此時(shí)的大小是否發(fā)生變化?(只需直接寫出你的猜想,不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】南沙群島是我國(guó)固有領(lǐng)土,現(xiàn)在我南海漁民要在南沙某海島附近進(jìn)行捕魚作業(yè),當(dāng)漁船航行至B處時(shí),測(cè)得該島位于正北方向海里的C處,為了防止某國(guó)還巡警干擾,就請(qǐng)求我A處的魚監(jiān)船前往C處護(hù)航,已知C位于A處的北偏東45°方向上,A位于B的北偏西30°的方向上,求A、C之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)(﹣3)+40+(﹣32)+(﹣8)
(2)12﹣(﹣18)+(﹣7)
(3)(+3)﹣(﹣5)+(﹣2)﹣(﹣32)
(4)81.26﹣293.8+8.74+111
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com