【題目】在平面坐標系中,正方形ABCD的位置如右圖所示,點A的坐標為(1,0),點D的坐標為(0,2),延長CB交x軸于點A1,作正方形A1B1C1C,延長C1B1交x軸于點A2,作正方形A2B2C2C1,…按這樣的規(guī)律進行下去,第2018個正方形的面積為( )
A. 5· B. 5· C. 5· D. 5·
【答案】D
【解析】分析: 先求出正方形ABCD的邊長和面積,再求出第一個正方形A1B1C1C的面積,得出規(guī)律,根據(jù)規(guī)律即可求出正方形A2018B2018C2018C2017的面積.
詳解: ∵點A的坐標為(1,0),點D的坐標為(0,2),
∴OA=1,OD=2,
∵∠AOD=90°,
∴AB=AD=,∠ODA+∠OAD=90°,
∵四邊形ABCD是正方形,
∴∠BAD=∠ABC=90°,S正方形ABCD=()2=5,
∴∠ABA1=90°,∠OAD+∠BAA1=90°,
∴∠ODA=∠BAA1,
∴△ABA1∽△DOA,
∴=,即 =,
∴BA1=,
∴CA1=,
∴正方形A1B1C1C的面積=()2=5×,…,
故正方形A2018B2018C2018C2017的面積為:5×()2018=5·.
故選:D.
點睛: 本題考查了正方形的性質以及坐標與圖形性質;通過求出正方形ABCD和正方形A1B1C1C的面積得出規(guī)律是解決問題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】(10分)如圖,已知∠AOB=90°,∠COD=90°,OE為∠BOD的平分線,∠BOE=17°18′,求∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AM∥BC,D,E分別為AC,BC的中點,射線ED交AM于點F,連接AE,CF。
(1)求證:四邊形ABEF是平行四邊形;
(2)當AB=AC時,求證:四邊形AECF時矩形;
(3)當∠BAC=90°時,判斷四邊形AECF的形狀,(只寫結論,不必證明)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一列有理數(shù)-1,2,-3,4,-5,6,…如圖所示排列,根據(jù)圖中的排列規(guī)律可知,“峰1”中封頂?shù)奈恢茫?/span>的位置)是有理數(shù)4,“峰2”中封頂?shù)奈恢茫?/span>的位置)是有理數(shù)-9,按此規(guī)律排列,2020應排在,,,,中________的位置.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形ABCD的邊長為6cm,點E,M分別是線段BD,AD上的動點,連接AE并延長,交邊BC于F,過M作MN⊥AF,垂足為H,交邊AB于點N.
(1)如圖①,若點M與點D重合,求證:AF=MN;
(2)如圖②,若點M從點D出發(fā),以1cm/s的速度沿DA向點A運動,同時點E從點B出發(fā),以cm/s的速度沿BD向點D運動,運動時間為ts.
①設BF=ycm,求y關于t的函數(shù)表達式;
②當BN=2AN時,連接FN,求FN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形紙片中,,,折疊紙片使點落在上的點處,折痕為,過點作交于點.
(1)求證:四邊形為菱形;
(2)當折痕的點與點重合時(如圖2),求菱形的邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直接寫出結果:
(1)﹣1+2=_____;
(2)﹣1﹣1=_____;
(3)(﹣3)3=_____;
(4)6÷(﹣1)=_____;
(5)(﹣1)2n﹣(﹣1)2n﹣1=_____(n為正整數(shù));
(6)方程4x=0的解為_____;
(7)方程﹣x=2的解為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“元旦”期間,平價商場對該商場商品進行如下的優(yōu)惠促銷活動:
打折前一次性購物總金額 | 優(yōu)惠措施 |
小于等于 400 元 | 不優(yōu)惠 |
超過 400 元,但不超過 600元 | 按售價打九折 |
超過 600 元 | 其中 600 元部分八折優(yōu)惠,超過 600 元的部分打六折優(yōu)惠 |
按上述優(yōu)惠條件,若小華一次性購買售價為 80 元/件的商品 n 件時,實際付款 504 元, 則 n=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com